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Introduction

Since its creation by Brunn and Minkowski, what has become known as
the Brunn�Minkowski theory has provided powerful machinery to solve a
broad variety of inverse problems with stereological data. The machinery of
the Brunn�Minkowski theory includes mixed volumes (of Minkowski),
symmetrization techniques (such as those of Steiner and Blaschke),
isoperimetric inequalities (such as the Brunn�Minkowski, Minkowski, and
Aleksandrov�Fenchel inequalities), integral transforms (such as the cosine
transform), and important auxiliary bodies associated with these trans-
forms (such as Minkowski's projection bodies). Schneider's recent book
[22] on the Brunn�Minkowski theory is the best available introduction to
the subject.

While the Brunn�Minkowski theory has proven to be of enormous value
in answering inverse questions regarding projections of convex bodies onto
subspaces, the theory has been of little value in answering inverse questions
with data regarding intersections with subspaces. However, recent advan-
cements have been made in the development of a dual Brunn�Minkowski
theory [3, 4, 5, 6, 8, 9, 11, 13, 16, 23, 26, 27, 28, 29] which has been
tailored specifically for dealing with such questions. In contrast to the
Brunn�Minkowski theory, in the dual theory convex bodies are replaced
by star-shaped sets, and projections onto subspaces are replaced by inter-
sections with subspaces. The machinery of the dual theory includes dual
mixed volumes (introduced by Lutwak [15, 16]), dual isoperimetric
inequalities ([16]), and important auxiliary bodies known as intersection
bodies (first introduced by Busemann for special centered convex bodies
in [1]; later defined for star-shaped sets by Lutwak [16]. See also [9]).
A comprehensive introduction to geometric tomography, including the
dual Brunn�Minkowski theory, may be found in Gardner's book [17].

Unfortunately, there still remain fundamental and foundational problems
with the dual Brunn�Minkowski theory. One of the most beautiful and
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important results of twentieth century convexity is Hadwiger's charac-
terization theorem for the elementary mixed volumes (Quermassintegrals)
(See [12, 14]). Hadwiger's characterization leads to effortless proofs of
numerous results in integral geometry, including the mean projection for-
mulas for convex bodies [22] and various kinematic formulas [20, 24].
This result also provides a connection between rigid motion invariant set
functions and symmetric polynomials [2, 20]. Hadwiger's theorem is of
such fundamental importance that any candidate for a dual theory must
possess a dual analogue of this theorem. As will be seen below, the dual
Brunn�Minkowski theory, as currently understood, is not sufficiently rich
to be able to accommodate a dual of Hadwiger's theorem.

The purpose of this paper is two-fold. First, it will be shown that the
natural setting for a dual Brunn�Minkowski theory is larger than that
envisioned by previous investigators. In the sections that follow I present
an extension of the dual Brunn�Minkowski theory to a broad class of star-
shaped sets previously inaccessible to the dual theory.

Second, I present a classification theorem for homogeneous valuations
on star-shaped sets. Included in this result is a classification of continuous
and homogeneous valuations that are invariant under the action of rota-
tions. This result leads in turn to a characterization theorem for the dual
elementary mixed volumes (dual Quermassintegrals), a dual analogue to
Hadwiger's characterization of the elementary Minkowski mixed volumes.

Backround material is sketched, and proofs are given for the main
results. For a more detailed treatment, see [13].

Section 1 contains a summary of certain results from geometric con-
vexity, the star analogues of which are developed in the subsequent sec-
tions. Of particular importance is the unusual definition of the Hausdorff
topology on the set of convex bodies, of which the dual analogue proves
a crucial tool for understanding valuations on the class of star-shaped
sets.

Section 2 begins with a definition for ``Ln-stars'', the class of bodies with
which we work throughout. This is followed by a new definition for the
dual Hausdorff topology on Ln-stars (corresponding to the Ln topology on
radial functions). Unlike previous definitions, this new analogue to the
Hausdorff topology permits a continuous action of the rotation group
SO(n) on the space of Ln-stars. Extensions are given for the dual mixed
volumes to this larger class of star-shaped sets. Definitions are given for
valuations (also called star valuations) of Ln-stars, and inclusion-exclusion
properties of dual mixed volumes are worked out.

The main result of this paper, presented in Section 4, is the classification
of all continuous star valuations that are homogeneous with respect to
dilation. This classification leads in turn to a characterization theorem for
dual mixed volumes of pairs of Ln-stars. These results are shown to be
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analogues of classical theorems of McMullen [18] and Goodey and Weil
[10] regarding homogeneous valuations of convex sets. I also present a
dual Hadwiger theorem for homogeneous valuations that are rotation
invariant.

1. Convexity

In this section we summarize results from the classical convexity theory.
Important modifications will be made in several of the classical definitions.
For detailed backround material, see [22].

We shall denote n-dimensional Euclidean space by Rn. The spherical
Lebesgue measure on the (n&1)-dimensional unit sphere Sn&1 shall be
denoted by S. For a function f : Sn&1 � R that is measurable with respect
to S, let

& f &p=\|Sn&1
| f | pdS+

1�p

.

A measurable function f on Sn&1 is called L p-integrable, or simply L p, if
& f &p<�.

Let Kn denote the set of all convex bodies in Rn ; i.e. the set of all com-
pact convex subsets of Rn. A convex body K # Kn is determined uniquely
by its support function hK : Sn&1 � R, defined by hK (u)=maxx # K[x } u],
where } denotes the standard inner product on Rn. The support function hK

is a continuous function on the unit sphere. For K, L # Kn, we have K�L
if and only if hK�hL .

Definition 1.1. Given K1 , K2 , ..., Km # Kn, and positive real numbers
*1 , *2 , ...,*m , the Minkowski linear combination K=*1K1+*2K2+ } } } +*mKm

is the convex body whose support function is given by hK=�m
j=1 *j hKj .

It is not hard to show that K consists of all vector sums *1x1+*2x2+
} } } +*mxm of points xj # Kj .

Definition 1.2. Let K1 , K2 , K3 , ... # Kn. The sequence [Kj]�
1 con-

verges to the convex body K in the Hausdorff topology if &hKj&hK &n � 0
as j � �.

This definition differs from the usual description of the Hausdorff
topology on Kn, in which the support functions of a convergent sequence
of bodies must be uniformly convergent rather than convergent in Ln.
However, it follows from a result of Vitale [25] that a sequence of support
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functions converges in the Ln topology if and only if the sequence con-
verges uniformly. Hence the two definitions are equivalent.

The volume (Lebesgue measure) of a convex body K is denoted by V(K).
For computing the volume of a Minkowski linear combination, we have
the following well-known result [22, p. 275]. Let [m] denote the set of
natural numbers 1, 2, ..., m.

Theorem 1.3. If K1 , ..., Km # Kn and *1 , ..., *m>0, then

V(*1K1+ } } } +*mKm)= :
i1, ..., in # [m]

V(Ki1
, ..., Kin) *i1 } } } *in ,

where each coefficient V(Ki1
, ..., Kin) depends only on the bodies Ki1 , ..., Kin .

Given K1 , ..., Kn # Kn, the coefficient V(K1 , ..., Kn) is called the
Minkowski mixed volume of the convex bodies K1 , ..., Kn . It is well-known,
but not trivial, that the mixed volume V(K1 , ..., Kn) is a non-negative con-
tinuous symmetric function in n variables on the set Kn and is monotonic
with respect to the subset partial ordering on Kn.

For 0�i�n and K, L # Kn, define Vi (K, L)=V(K, ..., K, L, ..., L), where
K appears n&i times and L appears i times in the right-hand expression.
Important special cases of the Minkowski mixed volumes are the elemen-
tary mixed volumes (or quermassintegrals) of a convex body K, defined by
Wi (K)=Vi (K, B), for 0�i�n, where B denotes the unit ball in Rn

centered at the origin.
The elementary mixed volumes are also known as the mean projection

measures. Let vi denote the i-dimensional volume on Ri, and let Gr(n, i)
denote the Grassmannian of i-dimensional subspaces of Rn. For ! # Gr(n, i)
and K # Kn, let K | ! denote the image of the orthogonal projection of the
body K onto the vector subspace !.

For K # Kn,

Wn&i (K)=
}n

}i
|

! # Gr(n, i)
vi (K | !) d!, (1)

where }i denotes the i-dimensional volume of the unit ball in Ri. The
integration in (1) is done with respect to the rotation invariant probability
measure on the Grassmannian Gr(n, i) [19, p. 131].

Two convex bodies K and L are said to be homothetic if there exists a
positive real number : such that L is a translate of :K=[:x : x # K]. If
L=:K, then K and L are said to be dilates. It will be convenient to recall
the following inequality for Minkowski mixed volumes. This inequality
follows from a successive application of the Aleksandrov�Fenchel Inequal-
ity [22, p. 327], followed by Minkowski's Inequality [22, p. 317].
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Theorem 1.4. Let K1 , ..., Kn # Kn. Then

V(K1 , ..., Kn)n�V(K1) } } } V(Kn),

with equality if and only if K1 , ..., Kn are homothetic.

A set function + : Kn � R is said to be a valuation on Kn if

1. +(<)=0

2. +(K _ L)++(K & L)=+(K)++(L)

for all K, L # Kn such that K _ L # Kn as well.
A valuation + on Kn will be called continuous if, for Ki � K in Kn,

limi � � +(Ki)=+(K). It is well-known that the elementary mixed volumes
W0 , W1 , ..., Wn are continuous valuations on Kn. A valuation + on Kn is
said to be rotation invariant if +(,K)=+(K) for all , # SO(n) and all
K # Kn. Similarly, a valuation + is said to be translation invariant if
+(�K)=+(K) for all translations � and all K # Kn. A valuation + is
invariant under rigid motions if + is both translation and rotation invariant.

The following theorem of Hadwiger (see [12, 14, 20]) classifies the con-
tinuous valuations on Kn that are invariant under rigid motions.

Theorem 1.5. Suppose that + is a continuous valuation on Kn, and that
+ is invariant under rigid motions. Then there exist c0 , c1 , ..., cn # R such
that, for all K # Kn,

+(K)= :
n

i=0

ciWi (K).

In other words, the continuous valuations that are invariant under rigid
motions form a real vector space spanned by the elementary mixed
volumes.

Let i>0. A valuation on Kn is homogeneous of degree i, if
+(cA)=ci+(A) for all c�0. In [18], McMullen proved the following
theorem.

Theorem 1.6. Suppose that + is a continuous translation invariant valua-
tion on Kn that is homogeneous of degree n&1. Then there exist sequences
[Lj]�

j=0 and [Mj]�
j=0 in Kn such that

+(K)= lim
j � �

(V1(K, Lj)&V1(K, Mj))

for all K # Kn.

In [10], Goodey and Weil give a similar classification for continuous
valuations that are homogeneous of degree 1.
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Theorem 1.7. Suppose that + is a continuous translation invariant valua-
tion on Kn. Then + is homogeneous of degree 1 if and only if there exist
sequences [Lj]�

j=0 and [Mj]�
j=0 in Kn such that, for all $>0,

+(K)= lim
j � �

(V1(Lj , K)&V1(Mj , K))

uniformly for all convex bodies K�$B.

In the sections that follow we shall develop analogues to Hadwiger's
theorem and to the results of McMullen, Goodey, and Weil in the context
of star-shaped sets.

2. Ln-Stars

Definition 2.1. A set A�Rn is said to be star-shaped, if 0 # A, and if
for each line l passing through the origin in Rn, the set A & l is a closed
interval.

Here 0 denotes the origin in Rn. A star-shaped set A is determined
uniquely by its radial function \A : Sn&1 � R, defined for u # Sn&1 by

\A(u)=max[*�0 : *u # A].

If A and C are star-shaped sets, then obviously A�C if and only if
\A�\C .

Definition 2.2. Given star-shaped sets A1 , ..., Am , and positive real
numbers *1 , ..., *m , the radial linear combination A=*1A1+� *2A2+� } } } +�
*mAm is the star-shaped set whose radial function is given by \A=
*1 \A1

+ } } } +*n \An .
Given a sequence of star-shaped sets A1 , A2 , ..., and an integer m>0, the

sets �m
i=1 Ai and ��

i=1 Ai are also star-shaped, having radial functions

\A1 _ } } } _ Am(u)= max
i # [m]

\Ai (u) and \A1 & A2 & } } } (u)= inf
i>0

\Ai (u). (2)

Note that ��
i=1 Ai is not necessarily a star-shaped set. If, for all lines l

through the origin, the set l & ��
i=1 Ai is closed, then the radial function

of ��
i=1 Ai is given by

\A1 _ A2 _ } } } (u)=max
i>0

\Ai (u).

Any non-negative function on Sn&1 will determine a star-shaped set, but
the set of all non-negative functions is far too large to suit our purposes.
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Definition 2.3. Let p>0. A star-shaped set K�Rn is an L p-star, if the
radial function \K of K is an L p function on Sn&1. Two L p-stars K, L are
defined to be equal whenever \K=\L almost everywhere on Sn&1. If \K is
a continuous function on Sn&1, then K is called a star body.

Denote by Sn the set of all Ln-stars in Rn. Denote by Sn
c the set of all

star bodies in Rn ; i.e. the set of all star-shaped sets with continuous radial
functions. Both Sn and Sn

c are closed under finite unions, finite intersec-
tions, and radial combinations. It follows from (2) that the collection Sn

is also closed under countable intersections. A star body is obviously an
Lp-star for all p�1.

Definition 2.4. Let K1 , K2 , K3 , ... # Sn. The sequence [Kj]�
1 is said to

converge to the Ln-star K in the star topology if &\Kj&\K&n � 0 as j � �.
The convergence of the star sequence [Kj]�

1 to the Ln-star K shall be
denoted Kj � K.

The star topology on Sn is the natural analogue of the Hausdorff
topology on the class Kn of convex bodies in Rn defined in Section 1.

Definition 2.4 disagrees with previous definitions of the topology of Sn,
in which uniform convergence of radial functions was required for a
sequence of star bodies to converge [16]. While sufficient when dealing
with star bodies, uniform convergence is too stringent a condition for con-
vergence in the larger class Sn. In particular, note that the action of the
rotation group SO(n) on Sn is not continuous in the star topology induced
by uniform convergence of radial functions.

Definition 2.5. A set function + : Sn � R is a valuation if

+(K _ L)++(K & L)=+(K)++(L)

for all K, L # Sn.

Note that a valuation on Sn need not be countably additive. For i>0,
a valuation + is homogeneous of degree i, if +(cA)=ci+(A) for all c�0.

We will denote by V the volume (or Lebesgue measure) in Rn, and we
will show that every Ln-star K has a volume V(K). This volume will agree
on convex bodies K with the volume V(K) mentioned in Section 1. Clearly
the volume V is a valuation on Sn. Often it will be convenient to express
V(K) in terms of polar coordinates on Rn. Some preliminary definitions are
helpful.

Definition 2.6. The star hull st(A) of A�Rn is defined by

st(A)=[*x : x # A, 0�*�1].
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From the definition of star hull we immediately have the following
lemma.

Lemma 2.7. For all A1 , A2 , ...�Rn,

st(A1 _ A2 _ } } } )= .
�

i=1

st(Ai), and st(A1 & A2 & } } } )� ,
�

i=1

st(Ai).

For :>0, denote by :Sn&1 the sphere of radius :, centered at the origin.
Similarly, denote by :B the n-dimensional ball of radius :, centered at the
origin.

Definition 2.8. Let :>0, and let A�:Sn&1 be measurable with
respect to the spherical Lebesgue measure. In this case the star hull st(A)
will be called a spherical cone with base A and height :. A collection of
spherical cones C1 , C2 , ... will be called disjoint if, Ci & Cj=[0] for each
i{ j.

Note that, by definition, a spherical cone always has a measurable base.
The results of Lemma 2.7 may be sharpened in the case where the star

hulls in question are spherical cones with bases in a common sphere :Sn&1.

Lemma 2.9. Let :>0. For all A1 , A2 , ...�:Sn&1,

st(A1 _ A2 _ } } } )= .
�

i=1

st(Ai), and st(A1 & A2 & } } } )= ,
�

i=1

st(Ai).

For A�Sn&1 the indicator function 1A : Sn&1 � R is defined by 1A(u)=1
if u # A, and 1A(u)=0 otherwise.

Lemma 2.10. Let :>0, and let st(A) be the spherical cone with base
A�:Sn&1. Let A1=(1�:) A=[x�: : x # A]. Then \st(A)=:1A1

. It follows
that st(A) # Sn.

Note that A1 is just the radial projection of st(A)&[0] onto Sn&1.
Let A�Sn&1 be such that st(A) is Lebesgue measurable in Rn. Let

S� (A)=nV(st(A)). It follows from Lemma 2.7, and from the measure
properties of V, that S� is a countably additive rotation invariant measure
on Sn&1. These conditions imply that S� =S (see [19]). Thus, if st(A) is a
Lebesgue measurable subset of Rn, then A is a Lebesgue measurable subset
of Sn&1, and st(A) is a spherical cone.

Definition 2.11. A polycone P is defined to be a finite union of spheri-
cal cones.
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It follows from Lemma 2.10 that a polycone is also an Ln-star. Radial
functions of polycones are characterized by the following elementary
proposition.

Proposition 2.12. Let P be a polycone. Then there exists a unique
collection :1 , ..., :m>0 and a unique collection of disjoint measurable sets
A1 , ..., Am �Sn&1 such that

\P= :
m

j=1

:j1Aj .

Conversely, any linear combination of measurable indicator functions is the
radial function of a polycone.

The set of polycones will prove to be useful for approximating arbitrary
Ln-stars.

Proposition 2.13. Let K # Sn. Then there exists an increasing sequence
P1�P2� } } } of polycones such that

lim
j � �

Pj=K

in Sn and such that \Pj � \K pointwise as well.

When K is a star body, the continuous radial function \K is bounded by
some :>0 almost everywhere on Sn&1. In this case, an increasing (or
decreasing) sequence \j of simple measurable functions may be found that
converges to \K uniformly. This is no longer true when K is a star-shaped
set with an arbitrary L p radial function.

It is not difficult to show that the polar coordinate formula for the
volume of a star body is valid for all Ln-stars:

Proposition 2.14. For all K # Sn,

V(K)=
1
n |

Sn&1
\n

K dS.

It follows from Proposition 2.14 that volume on the class of L p-stars is
defined if and only if p=n.

Analogues to the Minkowski mixed volumes can be defined using radial
combinations instead of Minkowski sums. For computing the volume of a
radial combination, we have the following dual to Theorem 1.3 (see also
[16]).
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Theorem 2.15. If K1 , ..., Km # Sn, and if *1 , ..., *m>0 then

V(*1K1+� } } } +� *mKm)= :
i1, ..., in # [m]

V� (Ki1 , ..., Kin) *i1 } } } *in ,

where each coefficient V� (Ki1
, ..., Kin) depends only on the bodies Ki1 , ..., Kin .

Given K1 , ..., Kn # Sn, the coefficient V� (K1 , . . .Kn) given by Theorem 2.15
is called the dual mixed volume of K1 , ..., Kn . Note that

V� (K1 , ..., Kn)=
1
n |

Sn&1
\K1

} } } \Kn dS. (3)

It follows from the integral representation (3) that V� is well-defined on Sn,
for the dual mixed volumes ignore sets of Lebesgue measure zero.

Lemma 2.16. Let f, g be non-negative L1 funtions on Sn. Let fj be a
sequence of non-negative L1 functions such that fj � f pointwise, and such
that

lim
j � � |

Sn&1
fj dS=|

Sn&1
f dS.

Let gj be a sequence of non-negative L1 functions such that gj � g pointwise
as j � �, and such that

gj� fj

for all j. Then

lim
j � � |

Sn&1
gj dS=|

Sn&1
g dS.

This generalization of the Lebesgue dominated convergence theorem is a
simple consequence of Fatou's Lemma [21, p. 23].

Proposition 2.17. The dual mixed volume V� (K1 , ..., Kn) is a non-negative
continuous function on Sn in n variables, and is monotonic with respect to
the subset partial ordering on Sn.

Proof. The non-negativity and monotonicity of V� is evident from the
integral representation (3). To prove that V� is continuous, let
K1 , ..., Kn # Kn, and suppose that for 1�i�n the sequence Kij � Ki as
j � �. By choosing subsequences if necessary, assume that \Kij � \Ki

pointwise.
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For =>0 there exists N such that &\Kij&\Ki &n<=�n for j�N and
1�i�n. Let fj=\K1j+\K2j+ } } } +\Knj for j>0, and let f=\K1

+
\K2

+ } } } +\Kn . Clearly fj � f pointwise, and for j>N we have

& f&fj &n�&\K1
&\K1j&n+ } } } +&\Kn&\Knj&n<=.

Therefore,

lim
j � � |

Sn&1
f n

j dS=|
Sn&1

f n dS.

Since \K1
} } } \Kn�f n and \K1j } } } \Knj�f n

j for all j, it follows from
Lemma 2.16 that

lim
j � � |

Sn&1
\K1j } } } \Knj dS=|

Sn&1
\K1

} } } \Kn dS,

so that V� (K1j , ..., Knj) � V� (K1 , ..., Kn).
Next, suppose that \Kij does not converge \Ki pointwise. Since every sub-

sequence of the sequence of n-tuples (K1j , ..., Knj) contains a sub-sub-
sequence whose radial functions converge pointwise [21, p. 68], it follows
again that V� K1j , ..., Knj) � V� (K1 , ..., Kn). K

Two L p-stars K and L are said to be dilates if there exists c>0 such that
\K=c\L almost everywhere on Sn&1; i.e. if K=cL in Sn. Just as there are
radial analogues for the Brunn�Minkowski and Aleksandrov�Fenchel
inequalities for star-shaped sets [16], from the Ho� lder inequality we have
the following radial analogue for Theorem 1.4.

Theorem 2.18. Let K1 , K2 , ..., Kn # Sn. Then

V� (K1 , K2 , ..., Kn)n�V(K1)V(K2) } } } V(Kn),

with equality if and only if K1 , K2 , ..., Kn are dilates.

For 0�i�n and K, Q # Sn, define V� i (K, Q)=V� (K, ..., K, Q, ..., Q), where
K appears n&i times and Q appears i times in the right-hand expression.

Proposition 2.19. Let Q # Sn be fixed. For 0�i�n, the function
K [ V� i (K, Q) is a continuous valuation on Sn.

We will denote by V� i ( } , Q) the valuation on Sn given by the map
K [ V� i (K, Q).

Proof. Since \k
K _ L+\k

K & L=\k
K+\k

L for all K, L # Sn and all k�0, the
integral representation (3) for the dual mixed volumes implies that
V� i ( } , Q) is a valuation. The continuity of V� i ( } , Q) follows from Proposi-
tion 2.17. K
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In analogy to the elementary mixed volumes for convex bodies, the i-th
dual elementary mixed volume W� i (K) of an Ln-star K is defined by
W� i (K)=V� i (K, B), for 0�i�n. It follows from Proposition 2.19 that the
dual elementary mixed volumes are continuous.

In analogy to the mean projection representation (1) for elementary
mixed volumes, we have the following mean intersection representation
[16] for the dual elementary mixed volumes of a star body K:

W� n&i (K)=
}n

}i
|

! # Gr(n, i)
vi (K & !) d!.

This is one example of the way in which results in the Brunn�Minkowski
theory translate into results in the theory of dual mixed volumes. In
Section 3 this result is extended to the class of Ln-stars (see Theorem 3.5).

There is a natural action of the special orthogonal group SO(n) on the
class of star-shaped sets. The following proposition is an immediate conse-
quence of the definition of a radial function.

Proposition 2.20. Let , # SO(n), and suppose that K is a star-shaped
set. Then the set ,K is also star-shaped, with \,K=\K b ,&1.

It follows that ,K is an L p-star (or a star body) if and only if K is an
Lp-star (or a star body).

3. Haar Measures and the Dual Theory

The dual mixed volumes supply us with a cornucopia of valuations on
the lattice of Ln-stars. Section 4 is devoted to the classification of valuations
that are homogeneous under dilation of Ln-stars. Such valuations are
closely related to measures on the unit sphere Sn&1, the subject of the
present section. Of especial use is the following well-known theorem
[19, p. 138].

Theorem 3.1. Let + be a countably additive Borel measure on the unit
sphere Sn&1, such that + is invariant under the action of the special
orthogonal group SO(n). Then there exists k # R such that +=kS.

Similarly, there exists a unique countably additive Borel probability
measure {i on the Grassmannian Gr(n, i) such that {i is rotation invariant.

A positive integral + on Sn&1 is a linear functional on the space of con-
tinuous real-valued functions on Sn&1 such that +( f ) is positive whenever
f is a nonnegative continuous function.
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Theorem 3.1 is a special case of a well-known theorem of A. Weil,
applied to unit sphere and to the Grassmannian. For a proof of Weil's
result, as well as a complete discussion of homogeneous spaces and Haar
integrals, see [19, p. 138].

Corollary 3.2. Let f : Sn&1 � R be an L1 function. Suppose that, for
each , # SO(n), we have f b ,=f almost everywhere. Then there exists c # R
such that f=c almost everywhere on Sn&1.

An important question may now be settled concerning the conditions
one must place on the (fixed) body Q so that the star valuation V� i ( } , Q)
is rotation invariant.

Theorem 3.3. Let i # [n], and let Q be an Ln-star. The valuation
V� i ( } , Q) is rotation invariant if and only if Q is a ball; that is, if and only
if there exists c # R such that V� i ( } , Q)=cW� i .

Proof. Let , # SO(n). From Theorem 2.18 it follows that

V� i (,Q, Q)n=V� (,Q, ,Q, ..., ,Q, Q, ..., Q)�V(,Q)n&iV(Q) i=V(Q)n.

Meanwhile, rotation invariance implies that V� i (,Q, Q)=V� i (Q, Q)=V(Q).
The above inequality becomes an equality. It then follows from the equality
conditions of Theorem 2.18 that ,Q is a dilate of Q. Since , preserves
volume, ,Q=Q. Combining this fact with Proposition 2.20, we have
\Q=\,Q=\Q b ,&1 almost everywhere on Sn&1, for all , # SO(n). By
Corollary 3.2, there exists c # R such that \i

Q=c almost everywhere. Since
\Q is non-negative, c�0, and so \Q=c1�i almost everywhere. Hence,
Q=c1�iB. K

The following result relates integrable functions on Sn&1 to integrable
functions on the Grassmannians (see e.g. [13, p. 46]).

Lemma 3.4. Let f : Sn&1 � R be a non-negative L1 function. Define a
function If : Gr(n, i) � R by the equation

If (!)=|
! & Sn&1

f dSi&1.

The function If is defined almost everywhere on Gr(n, i) with respect to the
measure {i . Moreover, If is integrable with respect to {i , with

|
Gr(n, i)

If d{i=
_i&1

_n&1
|

Sn&1
f dS.
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Here _j denotes the surface area of the j-dimensional unit sphere S j.
As an application of Lemma 3.4, we prove the following theorem relating

the dual elementary mixed volumes to the mean intersection integrals of an
Ln-star. This result was originally obtained by Lutwak for star bodies [16].

Theorem 3.5. Let K # Sn. For all i # [n],

W� n&i (K)=
}n

}i
|

! # Gr(n, i)
vi (K & !) d{i .

Proof. Let K # Sn. By Lemma 3.4 there exists an integrable function
IK=I\i

K
: Gr(n, i) � R, given by the equation

IK (!)=|
! & Sn&1

\i
K dSi&1. (4)

For K # Sn, it follows from (4) and Proposition 2.14 that

W� n&i (K)=
_n&1

n_i&1
|

Gr(n, i)
IK d{i=

}n

i}i
|

Gr(n, i)
|

! & Sn&1
\i

K dS i&1 d{i

=
}n

}i
|

! # Gr(n, i)
vi (K & !) d{i ,

where the first equality follows from Lemma 3.4. K

4. Homogeneous Valuations on Ln-Stars

We now present a classification theorem for valuations on Sn. Let + be
a continuous valuation on Sn that is homogeneous of degree i, where
i # [n]. Recall that two Ln-stars are equal if their radial functions are equal
almost everywhere. If an Ln-star K has Lebesgue measure zero, then \K=0
almost everywhere; i.e. K is equal to the singleton [0], so that +(K)=0.

Given a homogeneous valuation +, we construct a measure +~ on the
sphere Sn&1 that is absolutely continuous with respect to the Lebesgue
measure on Sn&1. The countable additivity of the induced measure +~ will
follow from the star continuity of +. The Lebesgue�Radon�Nikodym
Theorem then leads to a classification for the valuation +.

Proposition 4.1. Let + : Sn � R be a valuation that is continuous and
homogeneous of degree k, where k>0. Then + induces a countably additive
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measure +~ on Sn&1 that is absolutely continuous with respect to spherical
Lebesgue measure. Moreover, for A # Sn,

+(A)=|
Sn&1

\k
A d+~ .

Proof. Let A�Sn&1 be a Lebesgue measurable set, and let st(A) be the
spherical cone with base A and apex 0, as defined in Section 2. Since A is
measurable, st(A) is an Ln-star.

Define a measure +~ on all measurable A�Sn&1 by

+~ (A)=+(st(A)).

Recall from Lemma 2.9 that st(A1 _ A2)=st(A1) _ st(A2) and
st(A1 & A2)=st(A1) & st(A2). If A has Lebesgue measure zero in Sn&1,
then st(A)=[0] in Sn. The homogeneity of + then implies that +~ (A)=
+(st(A))=0. Thus +~ is absolutely continuous with respect to Lebesgue
measure.

Finally, let A1 , A2 , A3 , ... be a sequence of measurable subsets of Sn&1

that are mutually disjoint. For each i, the function \st(Ai)=1Ai . Because the
sets Ai are disjoint,

1A1 _ A2 _ } } } = :
�

i=1

1Ai= lim
m � �

:
m

i=1

1Ai= lim
m � �

1A1 _ } } } _ Am ,

where this limit is taken pointwise on Sn&1. In other words,

\st(A1 _ A2 _ } } } )= lim
m � �

\st(A1 _ } } } _ Am) ,

a pointwise limit of radial functions. Since the functions \st(A1 _ } } } _ Am)

form a monotonically increasing sequence, it follows from the monotone
convergence theorem that &\st(A1 _ A2 _ } } } )&\st(A1 _ } } } _ Am) &n � 0 as m � �.
Since + is continuous,

+~ \.
�

i=1

Ai+=+ \.
�

i=1

st(Ai)+= lim
m � �

+ \.
m

i=1

st(Ai)+
= lim

m � �
+~ \.

m

i=1

Ai+= lim
m � �

:
m

i=1

+~ (Ai)= :
�

i=1

+~ (Ai),

where the first and third equalities follow from Lemma 2.9.
Now let D�:Sn&1, where :Sn&1 is the sphere about the origin of radius

:. Since + is k-homogeneous, +(st(D))=:k+((1�:) st(D)). Since (1�:) st(D)
is a spherical cone with base (1�:) D�Sn&1,
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+(st(D))

=:k+ \1
:

st(D)+=:k+ \st \1
:

D++=:k+~ \1
:

D+=:k |
Sn&1

1(1�:) D d+~

=:k |
Sn&1

\k
st((1�:) D) d+~ =|

Sn&1
(:\st((1�:) D))

kd+~ =|
Sn&1

\k
st(D) d+~ .

Let P be a polycone. By Proposition 2.12, P=�m
j=1Cj , a disjoint union

of spherical cones Cj . It follows that

+(P)= :
m

j=1

+(Cj)= :
m

j=1
|

Sn&1
\k

Cj
d+~ =|

Sn&1
\k

P d+~ .

Finally, let K # Sn. By Proposition 2.13, there exists an increasing
sequence Pj of polycones such that Pj � K. Since + is continuous,

+(K)= lim
j � �

+(Pj)= lim
j � � |

Sn&1
\k

Pj
d+~ =|

Sn&1
\k

K d+~ ,

where the final equality follows from the monotone convergence
theorem. K

The situation becomes particularly interesting when the homogeneity
degree of + is an integer i # [n]. Using the Principle of Uniform Bounded-
ness (for bounded linear operators on Hilbert spaces) [21, p. 98] it is not
difficult to prove the following:

Lemma 4.2. Let p, q>1 such that (1�p)+(1�q)=1, and let f : Sn&1 � R.
Suppose that

} |Sn&1
gf dS }<�,

for all g # L p(S). Then f # Lq(S), and thus the linear functional defined by

g [ |
Sn&1

gf dS

is a continuous map from L p(S) into R.

The following theorem relates continuous homogeneous valuations on
Sn to the dual mixed volumes of Section 2.
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Theorem 4.3. Let + : Sn � R be a valuation that is continuous and
homogeneous of degree i, where i # [n]. Then there exist unique minimal
Ln-stars Q1 and Q2 such that

+(K)=V� n&i (K, Q1)&V� n&i (K, Q2)

for all K # Sn.

Proof. By Proposition 4.1, there exists a measure +~ on Sn&1 that is
absolutely continuous with respect to S, such that for all K # Sn,

+(K)=|
Sn&1

\i
K d+~ .

It then follows from the Lebesgue�Radon�Nikodym Theorem [21, p. 121]
that d+~ = f+ dS, where f+ : Sn&1 � R is an L1 function on Sn&1. Hence,

+(K)=|
Sn&1

\i
K f+ dS (5)

for all K # Sn.
Since |+(K)|<� for all K # Sn, the integral

} |Sn&1
gf+ dS }<�,

for all Ln�i functions g : Sn&1 � R. It follows from Lemma 4.2 that f+ is an
Ln�(n&i) function on Sn&1. Conversely, (5) defines a continuous valuation
on Sn for each function f+ # Ln�(n&i).

For u # Sn&1, let f +
+ (u)=max[ f+(u), 0], and let f &

+ (u)=&min[ f+(u), 0].
Since &f +

+ &n�(n&i)�& f+&n�(n&i) and &f &
+ &n�(n&i)�& f+&n�(n&i) , both f +

+ and
f &

+ are Ln�(n&i) functions.
Let Q1 and Q2 be the star-shaped sets satisfying the conditions

\n&i
Q1

=nf +
+ and \n&i

Q2
=nf &

+ . Then Q1 , Q2 # Sn, and, for all K # Sn,

+(K)=|
Sn&1

\i
K f +

+ &|
Sn&1

\i
K f &

+ dS

=
1
n |

Sn&1
\i

K\n&i
Q1

dS&
1
n |

Sn&1
\i

K\n&i
Q2

dS

=V� n&i (K, Q1)&V� n&i (K, Q2).
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To see that Q1 and Q2 are minimal, suppose there exists another pair of
star-shaped sets M1 and M2 such that

+(K)=V� n&i (K, M1)&V� n&i (K, M2)=
1
n |

Sn&1
\i

K(\n&i
M1

&\n&i
M2

) dS

for all K # Sn&1. The uniqueness of f+ implies that f+=(1�n)(\n&i
M1

&\n&i
M2

).
If f+(u)�0, then f +

+ (u)= f+(u)�(1�n) \n&i
M1

(u). If f+(u)<0 then
f +

+ (u)=0�(1�n) \n&i
M1

(u). Hence (1�n) \n&i
Q1

(u)= f +
+ (u)�(1�n) \n&i

M1
(u) for

all u # Sn&1 (except possibly on a set of spherical Lebesgue measure zero).
It follows that Q1 �M1 . A similar argument shows that Q2 �M2 .

Note that the usefulness of Lemma 4.2 to the proof of Theorem 4.3
depends heavily on the fact that the radial functions \K are n-integrable,
where n is the dimension of the ambient Euclidean space.

Corollary 4.4. Let + : Sn � R be a continuous star valuation,
homogeneous of degree i, where i # [n]. If + is non-negative, then there exists
a unique Ln-star Q such that +(K)=V� n&i (K, Q) for all K # Sn.

Proof. In this case the function f+ in the previous proof will be non-
negative almost everywhere (and so we may choose it to be non-negative).
Hence Q2=0 and Q=Q1 . The uniqueness of Q follows from the unique-
ness of f+ in the Lebesgue�Radon�Nikodym Theorem. K

There remains the case where the valuation + is invariant under rotations
of Ln-stars. Here the result is particularly satisfying, for it mirrors
Hadwiger's classification for valuations on convex bodies (see Theorem 1.5).

Theorem 4.5. Let + : Sn � R be a continuous rotation invariant valua-
tion that is homogeneous of degree i, where i # [n]. Then there exists : # R
such that +(K)=:W� n&i (K), for all K # Sn.

Proof. Given , # SO(n), the measure on Sn&1 given by d+~ ,= f+ b , dS
is equal to the measure d+~ = f+ dS. By the uniqueness of f+ in the Lebesgue�
Radon�Nikodym Theorem, it follows that f+ b ,= f+ almost everywhere.
By Corollary 3.2, there exists : # R such that f+=: almost everywhere.
Thus for all K # Sn,

+(K)=
1
n |

Sn&1
\i

K f+ dS=
:
n |

Sn&1
\i

K dS=:W� n&i (K). K

Examination of the arguments leading up to Theorem 4.5 reveals that
this classification applies even if the homogeneity degree i is not an integer,
a fact which motivates the following definition.
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Definition 4.6. Let i>0, and let Q be a fixed Ln-star. For all K # Sn,
define V� n&i (K, Q) by the following expression:

V� n&i (K, Q)=
1
n |

Sn&1
\i

K \n&i
Q dS,

and define W� n&i (K)=V� n&i (K, B).

If i>n, note that \Q>0 almost everywhere.

Proposition 4.7. Let Q be a fixed Ln-star, satisfying the conditions of
Definition 4.6. Then V� n&i ( } , Q) defines a continuous valuation on Sn, for
0�i�n.

Having at no point used the integer properties of the homogeneity
degree i in the proofs of Theorem 4.3 and Theorem 4.5, we may
immediately conclude the following.

Theorem 4.8 (Classification of Homogeneous Valuations on S n). Let
+ : Sn � R be a valuation that is continuous and homogeneous of degree i,
where 0�i�n.

(1) There exist unique minimal Ln-stars Q1 and Q2 such that

+(K)=V� n&i (K, Q1)&V� n&i (K, Q2)

for all K # Sn.

(2) If the valuation + is also rotation invariant, then there exists : # R
such that

+(K)=:W� n&i (K).

From Theorem 4.8 we may deduce the following star analogue to the
results of McMullen, Goodey, and Weil (Theorems 1.6 and 1.7).

Theorem 4.9. Let + : Sn � R be a set function. Then + is a continuous
valuation, homogeneous of degree 0<i<n, if and only if there exist sequences
[Lj]�

j=0 and [Mj]�
j=0 in Sn

c such that,

+(K)= lim
j � �

(V� n&i (K, Lj)&V� n&i (K, Mj)),

for all K # Sn.

Proof. Let + be a continuous valuation on Sn that is homogeneous of
degree i, where 0<i<n. By Theorem 4.8, there exist fixed Ln-stars Q1 and
Q2 such that

+(K)=V� n&i (K, Q1)&V� n&i (K, Q2)
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for all K # Sn. Since the set of all real-valued continuous functions on Sn&1 is
dense in Ln(S), the set Sn

c of all star bodies is dense in Sn. Therefore, there exist
sequences of star bodies [Lj] and [Mj] such that Lj � Q1 and Mj � Q2 .

Let K # Sn. Recall from Proposition 2.19 that V� n&i (K, } ) : Sn � R is
continuous. Hence

lim
j � �

(V� n&i(K, Lj)&V� n&i (K, Mj))=(V� n&i (K, Q1)&V� n&i (K, Q2))=+(K).

Conversely, suppose that there exist sequences [Lj]�
j=0 and [Mj]�

j=0 in
Sn

c such that the following limit exists for all K # Sn:

+(K)= lim
j � �

(V� n&i (K, Lj)&V� n&i (K, Mj)). (6)

For j>0, let fj=\n&i
Lj

&\n&i
Mj

, and let +j (K)=V� i (K, Lj)&V� n&i (K, Mj).
Note that fj is continuous. It then follows from the Ho� lder inequality that
each +j determines a bounded (continuous) linear operator Tj on the space
of Ln�i functions on Sn&1, given by

Tj (g)=
1
n |

Sn&1
gfj dS,

for all g # Ln�i (Sn&1). The limit + also determines a linear operator T on
Ln�i (Sn&1), given by

T(g)= lim
j � �

Tj (g)= lim
j � �

1
n |

Sn&1
gfj dS. (7)

The existence of the limit T(g) follows from the existence of the limit in (6).
Since |T(g)|<�, the Principle of Uniform Boundedness implies the
existence of a constant c>0 such that |Tj (g)|�c&g&n�i for all g # Ln�i (S). It
then follows from (7) that |T(g)|�c&g&n�i . Therefore, T is a continuous
linear functional on Ln�i (S), and there exists f # Ln�(n&i)(S) such that

+(K)=T(\i
K)=

1
n |

Sn&1
\i

K f dS,

for all K # Sn (see [21, p. 126]). Decompose the function f into the dif-
ference of non-negative functions f= f +& f & in the usual way, and let
\n&i

Q1
= f + and \n&i

Q2
= f &. Then Q1 , Q2 # Sn, and

+(K)=
1
n |

Sn&1
\i

K ( f +& f &) dS=V� n&i (K, Q1)&V� n&i (K, Q2)

for all K # Sn. It now follows from Theorem 4.8 that + is a continuous
valuation, and that + is homogeneous of degree i. K
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