

The American Mathematical Monthly

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uamm20

A Probabilistic Proof of the Spherical Excess Formula

Daniel A. Klain

To cite this article: Daniel A. Klain (2021) A Probabilistic Proof of the Spherical Excess Formula, The American Mathematical Monthly, 128:1, 70-72, DOI: <u>10.1080/00029890.2021.1839303</u>

To link to this article: https://doi.org/10.1080/00029890.2021.1839303

Published online: 15 Jan 2021.

Submit your article to this journal 🖙

View related articles

View Crossmark data 🗹

NOTES Edited by **Vadim Ponomarenko**

A Probabilistic Proof of the Spherical Excess Formula

Daniel A. Klain

Abstract. A probabilistic proof of Girard's angle excess formula for the area of a spherical triangle emerges from the observation that an unbounded 3-dimensional convex cone, with single vertex at the origin, has only three kinds of 2-dimensional orthogonal projections: a 2-dimensional convex cone with one vertex, a 2-dimensional half-plane (an outcome with probability zero), and a 2-dimensional plane.

A triangle *T* in the unit sphere with inner angles θ_1 , θ_2 , and θ_3 has area given by the *spherical excess formula*¹:

$$\operatorname{Area}(T) = \theta_1 + \theta_2 + \theta_3 - \pi. \tag{1}$$

See Figure 1.

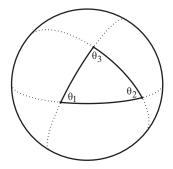


Figure 1. A spherical triangle.

This note offers a probabilistic proof of the angle excess formula (1), based on the observation that an unbounded cone at the origin in \mathbb{R}^3 has only three kinds of 2-dimensional orthogonal projections: a cone in \mathbb{R}^2 , a half-plane in \mathbb{R}^2 (an outcome with probability zero), and all of \mathbb{R}^2 . See Figure 2.

Observe that, if we omit the middle outcome of measure zero, the number of edges on each projected figure is *twice* the number of vertices.

Some notation will help to interpret angles as probabilities. Let S denote the unit sphere in \mathbb{R}^3 centered at the origin, having surface area 4π .

¹This formula was discovered in 1603 by Thomas Harriot [6, p. 65] and is also known as Girard's formula [2, p. 95].

doi.org/10.1080/00029890.2021.1839303 MSC: Primary 52A15

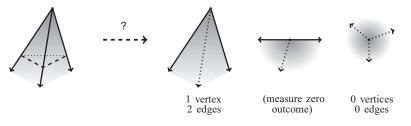


Figure 2. Projections of a 3-dimensional cone.

Suppose that *P* is a convex polytope in \mathbb{R}^3 , and let *x* be any point of *P*. The *solid inner angle* $a_P(x)$ of *P* at *x* is given by

$$a_P(x) = \{u \in \mathbb{S} \mid x + \epsilon u \in P \text{ for some } \epsilon > 0\}.$$

Let $\alpha_P(x)$ denote the measure of the solid inner angle $a_P(x) \subseteq S$, given by the usual surface area measure on subsets of the sphere.

If *F* is a vertex, edge, or facet of a convex polytope *P*, then the solid inner angle measure $\alpha_P(x)$ is the same at every point *x* in the relative interior of *F*. This value will be denoted by $\alpha_P(F)$.

Consider the case of an unbounded cone *C* with single vertex at the origin *o*, as in Figure 2. Specifically, let v_1 , v_2 , v_3 be three linearly independent unit vectors in \mathbb{R}^3 , and let *C* denote all nonnegative linear combinations:

$$C = \{t_1v_1 + t_2v_2 + t_3v_3 \mid t_i \ge 0\}.$$

The polyhedral cone *C* has exactly one vertex at *o* and three (unbounded) edges e_i along the directions of the vectors v_i . Note that $\alpha_C(o)$ is the area of the spherical triangle with vertices at v_i . Denote the spherical angles of this triangle by θ_i , as in Figure 1 (where *o* lies at the center of the sphere in Figure 1).

Given a uniformly distributed random unit vector u, let C_u denote the orthogonal projection of C onto the plane u^{\perp} . Evidently C_u will resemble one of the outcomes in Figure 2. Specifically, C_u will cover the entire plane u^{\perp} if and only if u lies in the interior of $\pm a_C(o)$. It follows that $C_u = u^{\perp}$ with probability

$$\frac{\operatorname{Area}(a_{C}(o)) + \operatorname{Area}(-a_{C}(o))}{4\pi} = \frac{2\alpha_{C}(o)}{4\pi} = \frac{\alpha_{C}(o)}{2\pi}.$$

Since the number of vertices of C_u is either 0 or 1, the expected number of vertices of C_u is given by the complementary probability

$$E(\# \text{ of vertices}) = 1 - \frac{\alpha_C(o)}{2\pi}.$$
 (2)

Meanwhile, an edge *e* projects to the interior of C_u if and only if *u* lies in the interior of $\pm a_C(e)$. Taking the complement as before, *e* projects to a boundary edge of C_u with probability $1 - \frac{\alpha_C(e)}{2\pi}$. Observe that each solid inner angle measure $\alpha_C(e_i)$ is given by $2\theta_i$ (see Figure 3), so that the expected number of edges of C_u is

$$E(\# \text{ of edges}) = \sum_{i} \left(1 - \frac{\alpha_{C}(e_{i})}{2\pi} \right) = \sum_{i} \left(1 - \frac{\theta_{i}}{\pi} \right) = 3 - \frac{\theta_{1} + \theta_{2} + \theta_{3}}{\pi}.$$
 (3)

January 2021]

NOTES

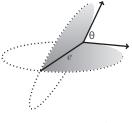


Figure 3. $\alpha_C(e) = 2\theta$.

Since the number of edges in C_u is almost surely *twice* the number of vertices (see Figure 2), the identities (2) and (3) imply that

$$3 - \frac{\theta_1 + \theta_2 + \theta_3}{\pi} = E(\# \text{ of edges}) = 2E(\# \text{ of vertices}) = 2 - \frac{\alpha_C(o)}{\pi}.$$
 (4)

It is now immediate from (4) that

$$\alpha_C(o) = \theta_1 + \theta_2 + \theta_3 - \pi,$$

as asserted in (1).

In higher dimensions a proliferation of cases makes this viewpoint much more complicated. However, variations of this approach are applied in [1], [3], [4, p. 315a], [5], and [7] to derive many fundamental formulas for intrinsic volumes of polyhedral angles and cones.

REFERENCES

- Amelunxen, D., Lotz, M. (2017). Intrinsic volumes of polyhedral cones: a combinatorial perspective. Disc. Comput. Geom. 58(2): 371–409.
- [2] Coxeter, H. S. M. (1969). Introduction to Geometry, 2nd ed. New York: Wiley.
- [3] Feldman, D. V., Klain, D. (2009). Angles as probabilities. Amer. Math. Monthly. 116(8): 732–735.
- [4] Grünbaum, B. (2003). Convex Polytopes, 2nd ed. New York: Springer.
- [5] Perles, M. A., Shephard, G. C. (1967). Angle sums of convex polytopes. Math. Scand. 21: 199–218.
- [6] Stillwell, J. (1992). Geometry of Surfaces. New York: Springer.
- [7] Welzl, E. (1994). Gram's equation—a probabilistic proof. In: Karhumäki, J., Maurer, H., Rozenberg, G., eds. *Results and Trends in Theoretical Computer Science (Graz, 1994)*. Lecture Notes in Computer Science, Vol. 812. Berlin: Springer, pp. 422–424.

Mathematical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA Daniel_Klain@uml.edu