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NOTES
Edited by Vadim Ponomarenko

A Probabilistic Proof
of the Spherical Excess Formula

Daniel A. Klain

Abstract. A probabilistic proof of Girard’s angle excess formula for the area of a spherical
triangle emerges from the observation that an unbounded 3-dimensional convex cone, with
single vertex at the origin, has only three kinds of 2-dimensional orthogonal projections: a
2-dimensional convex cone with one vertex, a 2-dimensional half-plane (an outcome with
probability zero), and a 2-dimensional plane.

A triangle T in the unit sphere with inner angles θ1, θ2, and θ3 has area given by the
spherical excess formula1:

Area(T ) = θ1 + θ2 + θ3 − π. (1)

See Figure 1.
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Figure 1. A spherical triangle.

This note offers a probabilistic proof of the angle excess formula (1), based on the
observation that an unbounded cone at the origin in R

3 has only three kinds of 2-
dimensional orthogonal projections: a cone in R

2, a half-plane in R
2 (an outcome with

probability zero), and all of R2. See Figure 2.
Observe that, if we omit the middle outcome of measure zero, the number of edges

on each projected figure is twice the number of vertices.
Some notation will help to interpret angles as probabilities. Let S denote the unit

sphere in R
3 centered at the origin, having surface area 4π .

1This formula was discovered in 1603 by Thomas Harriot [6, p. 65] and is also known as Girard’s formula
[2, p. 95].
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Figure 2. Projections of a 3-dimensional cone.

Suppose that P is a convex polytope in R
3, and let x be any point of P . The solid

inner angle aP (x) of P at x is given by

aP (x) = {u ∈ S | x + εu ∈ P for some ε > 0}.
Let αP (x) denote the measure of the solid inner angle aP (x) ⊆ S, given by the usual
surface area measure on subsets of the sphere.

If F is a vertex, edge, or facet of a convex polytope P , then the solid inner angle
measure αP (x) is the same at every point x in the relative interior of F . This value will
be denoted by αP (F ).

Consider the case of an unbounded cone C with single vertex at the origin o, as in
Figure 2. Specifically, let v1, v2, v3 be three linearly independent unit vectors in R

3,
and let C denote all nonnegative linear combinations:

C = {t1v1 + t2v2 + t3v3 | ti ≥ 0}.
The polyhedral cone C has exactly one vertex at o and three (unbounded) edges ei

along the directions of the vectors vi . Note that αC(o) is the area of the spherical
triangle with vertices at vi . Denote the spherical angles of this triangle by θi , as in
Figure 1 (where o lies at the center of the sphere in Figure 1).

Given a uniformly distributed random unit vector u, let Cu denote the orthogonal
projection of C onto the plane u⊥. Evidently Cu will resemble one of the outcomes
in Figure 2. Specifically, Cu will cover the entire plane u⊥ if and only if u lies in the
interior of ±aC(o). It follows that Cu = u⊥ with probability

Area(aC(o)) + Area(−aC(o))

4π
= 2αC(o)

4π
= αC(o)

2π
.

Since the number of vertices of Cu is either 0 or 1, the expected number of vertices of
Cu is given by the complementary probability

E(# of vertices) = 1 − αC(o)

2π
. (2)

Meanwhile, an edge e projects to the interior of Cu if and only if u lies in the interior
of ±aC(e). Taking the complement as before, e projects to a boundary edge of Cu with
probability 1 − αC(e)

2π
. Observe that each solid inner angle measure αC(ei) is given by

2θi (see Figure 3), so that the expected number of edges of Cu is

E(# of edges) =
∑

i

(
1 − αC(ei)

2π

)
=

∑
i

(
1 − θi

π

)
= 3 − θ1 + θ2 + θ3

π
. (3)
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Figure 3. αC(e) = 2θ .

Since the number of edges in Cu is almost surely twice the number of vertices (see
Figure 2), the identities (2) and (3) imply that

3 − θ1 + θ2 + θ3

π
= E(# of edges) = 2E(# of vertices) = 2 − αC(o)

π
. (4)

It is now immediate from (4) that

αC(o) = θ1 + θ2 + θ3 − π,

as asserted in (1).

In higher dimensions a proliferation of cases makes this viewpoint much more com-
plicated. However, variations of this approach are applied in [1], [3], [4, p. 315a],
[5], and [7] to derive many fundamental formulas for intrinsic volumes of polyhedral
angles and cones.
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