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Abstract. If the four triangular facets of a tetrahedron can be partitioned into pairs having the
same area, then the triangles in each pair must be congruent to one another. A Heron-style
formula is then derived for the volume of a tetrahedron having this kind of symmetry.
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From elementary geometry we learn that two triangles are congruent if their edges have the
same three lengths. In particular, there is only one congruence class of equilateral triangles
having a given edge length. Said differently, any pair of equilateral triangles in the Euclidean
plane are similar, differing at most by an isometry and a dilation. Meanwhile, triangles that are
symmetric under a single reflection have two congruent sides and are said to be isosceles.

The situation is more complicated in higher dimensions. Indeed, an analogous characteri-
zation of 3-dimensional tetrahedra already leads to 25 different symmetry classes [22]. These
tetrahedral symmetry classes are of special interest in organic chemistry [8, 9, 21], and condi-
tions for tetrahedral symmetry based on the measures of dihedral angles have also been explored
[23].

A tetrahedron in R3 is equilateral or regular if all of its edges have the same length. More
generally, a tetrahedron is said to be isosceles if all four triangular facets are congruent to
one another, or, equivalently, if opposing (non-incident) edges have the same length. Isosceles
tetrahedra are also known as disphenoids [4, p. 15]. It has been shown that if all four facets of
a tetrahedron T have the same area, then T must be isosceles [10, p. 94][11, 16].

Consider the following more general symmetry class of tetrahedra: A tetrahedron T will be
called reversible if its facets are congruent in pairs; that is, if the facets of T can be labelled
f1, f2, f3, f4, where f1 � f2 and f3 � f4.
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Figure 1. An reversible tetrahedron with edge lengths a, a, b, b, c, d.
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In this note we show that, as in the isosceles case, reversible tetrahedra are characterized by
the areas of their facets: if the four triangular facets of T can be partitioned into pairs with the
same area, then those pairs consist of congruent facets.

In the final section we give an intuitive method for deriving a Heron-style factorization of the
volume of a reversible tetrahedron in terms of its edge lengths.

1. Facets normals and areas determine tetrahedra

The following proposition will allow us to exploit symmetries more easily.

Proposition 1.1. Suppose that a tetrahedron T has outward facet unit normals u0, u1, u2, u3,
with corresponding facet areas α0, α1, α2, α3 > 0. Then

α0u0 + α1u1 + α2u2 + α3u3 = 0.(1)

Conversely, if unit vectors u0, u1, u2, u3 span R3, and if αi > 0 satisfy (1), then there exists a
tetrahedron T , having outward facet unit normals ui, and corresponding facet areas αi, and this
tetrahedron is unique up to translation.

This proposition is a very special case of the Minkowski Existence Theorem, which plays a
central role in the Brunn-Minkowski theory of convex bodies, and is somewhat difficult to prove
[3, 18]. However, this special case for tetrahedra is a simple consequence of linear algebra.
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Figure 2. A tetrahedron with outward unit normals ui.

Proof. Let T be a tetrahedron with vertices at v0, v1, v2, v3 ∈ R3, where v0 = o, the origin. Let us
assume the vertices are labelled so that v1, v2, v3 have a positive (“right-handed”) orientation.

Denote by u0, u1, u2, u3 the outward unit normal vectors of the facets of T , where ui is associ-
ated with the facet opposite to the vertex vi, as in Figure 2. Let αi denote the area of that same
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ith facet. Since v0 = o, we have

v2 × v3 = −2α1u1

v3 × v1 = −2α2u2(2)
v1 × v2 = −2α3u3

(v3 − v1) × (v2 − v1) = −2α0u0.

After summing both sides of these equations the identity (1) now follows.
To prove the converse, suppose we are given unit vectors u0, u1, u2, u3 that span R3 and αi > 0

satisfying (1). Let T̃ denote the intersection of the closed half-spaces x · ui ≤ 1.
The spanning condition on the ui, along with the identity (1), imply that any 3 of the vectors ui

are linearly independent. Since each αi > 0, it follows from (1) that T̃ is a bounded tetrahedron
with facets normal to the ui. Translate this tetrahedron so that one vertex lies at the origin o, and
then slide the facet opposite to o along the direction of u0 so that this facet has area α0. This
new tetrahedron T now has facet areas α′0 = α0, α

′
1, α

′
2, and α′3, and must also satisfy (1), so that

α0u0 + α′1u1 + α′2u2 + α′3u3 = 0.

Combining this with identity (1) for the original given data yields

α′1u1 + α′2u2 + α′3u3 = α1u1 + α2u2 + α3u3.

Since u1, u2, u3 are linearly independent, each α′i = αi, and T is the tetrahedron required, unique
up to translation. �

Remark: Given the surface data ui and αi it is not difficult to construct the corresponding
tetrahedron T explicitly. To do so, let C denote the 3 × 3 matrix having columns −2αiui for
i > 0, ordered so that C has positive determinant. The matrix

A = det(C)
1
2 C−t

has cofactor matrix C. It is not difficult to show (using Cramer’s Rule and basic linear algebra)
that the columns of A, along with the origin, yield the vertices of a tetrahedron having facet
normals ui and corresponding facet areas αi. Uniqueness up to translation also follows from
this explicit construction (which generalizes to n dimensions as well).

2. Equal areas imply congruent faces

We now prove that the areas of the facets alone will determine if a tetrahedron is reversible.

Theorem 2.1. Suppose that T is a tetrahedron in R3, and denote by f1, f2, f3, f4 the triangular
facets of T . If the facets of T satisfy the conditions

Area( f1) = Area( f2) and Area( f3) = Area( f4)

then f1 � f2 and f3 � f4.

The proof of Theorem 2.1 uses the method given by McMullen in [16] to verify the special
case in which all four facets have the same area (as in Corollary 2.2 below).
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Proof. Denote by ui the outward unit normal vector to the facet fi of T . Suppose that Area( f1) =

Area( f2) = α and Area( f3) = Area( f4) = β, where α, β > 0. The identity (1) asserts that

αu1 + αu2 + βu3 + βu4 = 0.

Denote
w = αu1 + αu2 = −βu3 − βu4.

Let ψ denote the rotation of R3 by the angle π around the the axis through w. Since the vectors
αu1 and αu2 have the same length, the points o, αu1, αu2,w are the vertices of a rhombus. The
rotation ψ rotates this rhombus onto itself, exchanging the vectors αu1 and αu2. The points
o, βu3, βu4,−w form a rhombus through the same axis, so that ψ also exchanges the vectors βu3

and βu4. Since ψ is a rotation, it preserves orthogonality. It follows that P and ψP have the same
normal vectors and the same corresponding facet areas. Proposition 1.1 then implies that P and
ψP are congruent by a translation. In particular, the facets f1 and f2 are congruent, as are f3 and
f4. �

The case of isosceles tetrahedra described in the introduction follows as an immediate corol-
lary to Theorem 2.1.

Corollary 2.2. Suppose that T is a tetrahedron in R3. If the faces fi of T satisfy the condition

Area( f1) = Area( f2) = Area( f3) = Area( f4)

then f1 � f2 � f3 � f4.

In other words, if a tetrahedron T is equiareal, then T is also isosceles. For alternative proofs
and variants of Corollary 2.2, see [10, 11, 15, 16].
Remark: Corollary 2.2 has long been known to have an analogue in which area is replaced
by perimeter. The proof is very simple: If all of the facets of T have the same perimeter, the
resulting system of linear equations (in the six edge lengths of T ) implies that opposing edges
must have the same length, so that T is isosceles. A similar argument shows that if the facets of
T can be partitioned into pairs having the same perimeter then T is reversible.

3. Factoring the volume

Suppose that T ⊆ R3 is a tetrahedron with vertices at v0, v1, v2, v3 ∈ R3, where v0 = o, the
origin. As before, let A denote the matrix whose columns are given by the vectors vi, and
suppose that the vi are ordered so that A has positive determinant. The volume of T is then
given by det(A) = 6V(T ), so that

V(T )2 =
1

36
det(AtA).

The entries of the matrix AtA are dot products of the form vi · v j. From the identity,

(3) 2vi · v j = |vi|2 + |v j|2 − |vi − v j|2
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it then follows that the value of V(T )2 is a polynomial in the squares of the edge lengths of
T . Said differently, if T has edge lengths ai j (the distance between vertices vi and v j), then
V(T )2 is a polynomial in the variables bi j = a2

i j, as well as the variables ai j themselves. This
polynomial is sometimes formulated in terms of linear algebraic expressions such as Cayley-
Menger determinants [19, p. 125]. While the Cayley-Menger heuristic outlined above applies
in arbitrary dimension, the 3-dimensional case has been known at least as far back as Piero della
Francesca [17].1

In certain instances, the polynomial V(T )2 admits factorization into linear or quadratic irre-
ducible factors. For the 2-dimensional case, the area A(∆) of a triangle ∆ having edge lengths
a, b, c is given by

A(∆)2 =
1

16
(a + b + c)(−a + b + c)(a − b + c)(a + b − c),

a factorization known as Heron’s formula [5, p. 58]. Although the 3-dimensional case is more
complicated [7], there exist non-trivial factorizations of V(T )2 when the tetrahedron T satisfies
the symmetry properties examined in the previous section.

For example, if T is an isosceles tetrahedron, having edge lengths a, b, c (each repeated twice
in pairs of opposing edges), then

(4) V(T )2 =
1

72
(
a2 + b2 − c2)(a2 − b2 + c2)( − a2 + b2 + c2).

A synthetic proof of (4) can be found in [20, p. 101]. Instead we will give an algebraic proof of
the following more general result, using a technique outlined in [13].

The edges of a reversible tetrahedron T come in (at most) 4 lengths. To see this, label the
edge lengths of T so that the triangular facets f1 � f2 have edge lengths a, b, c, with common
edge of length c. Since f3 � f4, they must have edge lengths a, b, d. The six edges of T then
have lengths a, a, b, b, c, d, as in Figure 1.

Theorem 3.1 (Volume Formula). Suppose that T is a reversible tetrahedron having edge lengths
a, a, b, b, c, d. Then

(5) V(T )2 =
1

72

(
c2d2 − (a2 − b2)2

)(
a2 + b2 − c2 + d2

2

)
.

The first polynomial factor in the formula (5) is a difference of two squares, so that (5) can
be reformulated as

(6) V(T )2 =
1

72
(
cd + a2 − b2)(cd − a2 + b2)(a2 + b2 − c2 + d2

2

)
.

In the special case where c = d, the tetrahedron T is isosceles, and the formula (6) reduces
to (4).

1Piero della Francesca (1415-1492), an Italian painter and geometer of the early Renaissance period.
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The proof of (5) will make use of two identities from plane geometry. The well-known
parallelogram law asserts that if edges of a parallelogram in R2 are labelled as in Figure 1, then
2a2 + 2b2 = c2 + d2.

The less well-known trapezoid law asserts that, if the edges of a convex isosceles trapezoid
are labelled as in Figure 3, then b2 − a2 = cd.

c

d

a a
b b

o w

vu

Figure 3. The trapezoid law: b2 − a2 = cd.

To see why, observe that

b2 − a2 = |u − w|2 − |v − w|2
= u · u − 2u · w + w · w − v · v + 2v · w − w · w
= |u|2 − |v|2 + 2w · (v − u)

= a2 − b2 + 2cd,

where the last step follows from the parallelism of w and v−u. The trapezoid law now follows.

Proof of The Volume Formula 3.1. Let f (a, b, c, d) denote the polynomial V(T )2. The factors of
f can be determined by considering the cases in which the volume of T is zero, namely, when
the tetrahedron T is flat or otherwise degenerate. If T is reversible, this can occur in two ways.

In one case, T may flatten to a parallelogram, having edges of length a, b, a, b and diagonals
of length c, d. In this instance, the parallelogram law for the standard inner product implies that
2a2 + 2b2 = c2 + d2.

In the second case, T may flatten to a trapezoid, having non-parallel edges of length a, a,
parallel edges of length c, d, and diagonals of length b, b. In this instance, the trapezoid law
implies that (b2 − a2)2 = c2d2,

These cases suggest both 2a2 + 2b2 − c2 − d2 and c2d2 − (b2 − a2)2 as possible factors of the
polynomial f .

Denote A = a2, B = b2, C = c2 and D = d2. We observed following (3) above that f
is a polynomial in the squared values a2, b2, c2, d2, so that f = f (A, B,C,D) ∈ R[A, B,C,D].
Since volume V is homogeneous of degree 3 with respect to length, the polynomial f = V2 is
homogeneous of degree 6 with respect to the variables a, b, c, d, and is therefore homogeneous
of degree 3 with respect to the variables A, B,C,D; that is, a homogeneous cubic polynomial in
R[A, B,C,D].
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To verify that 2a2 +2b2−c2−d2 is indeed a factor of f (a, b, c, d), use division with remainder
in R[A, B,C,D] to obtain

f (A, B,C,D) = (2A + 2B −C − D)g(A, B,C,D) + r(B,C,D),

for some g ∈ R[A, B,C,D] and r ∈ R[B,C,D]. Here division with remainder in R[A, B,C,D] is
performed here using lexicographical order on the variables A, B,C,D. (See, for example, [6,
p. 54].)

Note that A does not appear in the polynomial expression for r. Suppose that C > D > 0. By
the triangle inequality, each B such that

√
C −

√
D < 2

√
B <

√
C +

√
D

gives rise to a parallelogram as in Figure 4, yielding A ≥ 0 so that 2A + 2B − C − D = 0.
This degenerate reversible tetrahedron T has volume zero, so that f (A, B,C,D) = V2 = 0. It
follows that r(B,C,D) = 0 on a non-empty open set. Since r is a polynomial, it follows that r is
identically zero, so that

f (A, B,C,D) = (2A + 2B −C − D)g(A, B,C,D).

In other words, 2A + 2B −C − D divides f in R[A, B,C,D].

√
A

√
B

√
C/2

√
D/2

Figure 4. This parallelogram exists iff 1
2

√
C − 1

2

√
D ≤ √B ≤ 1

2

√
C + 1

2

√
D.

For the trapezoidal factors, view f as polynomial in R[A, B, c, d], and write

f (A, B, c, d) = (cd − B + A)g̃(A, B, c, d) + r̃(B, c, d),

using division with remainder in R[A, B, c, d] under lexicographical order on the variables
A, B, c, d. Once again the remainder r̃ is independent of the variable A, while a trapezoidal
degenerate (zero volume) tetrahedron can be constructed for an open set of values (B, c, d), so
that r̃ is also identically zero. Therefore, (cd − B + A) is also a factor f .

Finally, a symmetrical argument (reversing the roles of A and B) yields a factor of (cd−A+B).
Since R[A, B, c, d] is a unique factorization domain [2, p. 371][6, p. 149], the irreducible

factors (cd − B + A), and (cd − A + B) are prime, so that

(cd − B + A)(cd − A + B) = c2d2 − (B − A)2 = CD − (B − A)2

divides f .
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Similarly, since R[A, B,C,D] is a unique factorization domain, the two irreducible factors
CD − (B − A)2, and 2A + 2B −C − D are prime in R[A, B,C,D], so that

V2 = f = (2A + 2B −C − D)(CD − (B − A)2)k.(7)

Because f is a homogeneous cubic polynomial in R[A, B,C,D], the factor k must be a constant,
independent of the parameters A, B,C,D.

To compute the constant k, recall that the volume of the regular (equilateral) tetrahedron of
unit edge length A = B = C = D = 1 is

√
2/12. It follows that

1
72

=

 √2
12

2

= V2 = f (1, 1, 1, 1) = 2k.

Hence, k = 1/144, and (7) becomes (5). �

I. Izmestiev has pointed out that applying the Regge symmetry [1] to a reversible tetrahedron
gives a new reversible tetrahedron having the same volume, and for which the factors of the
Cayley-Menger polynomial (6) are permuted [12].

4. Generalizations

A convex polytope P in Rn will be called reversible if there is an affine plane ξ of co-
dimension 2 such that P is symmetric under the 180◦ rotation of the 2-plane ξ⊥ that fixes ξ.

If a tetrahedron T is R3 is symmetric under a 180◦ rotation around a line `, then this rotation
must map facets to facets and facet normals to facet normals. In view of Proposition 1.1, the
only way this can occur is when ` passes through the midpoints of two non-adjacent edges of
T , so that T must have pairs of congruent facets, as in the examples addressed earlier. It follows
that this more general definition of a reversible polytope is consistent with the definition given
earlier for tetrahedra in R3. However, naive analogues of the theorems of this paper do not
follow, because this level of symmetry admits many more variations in structure for dimensions
n ≥ 4. Indeed, there exist 4-dimensional simplices in which all 5 facets have the same volume
in spite of not being mutually congruent. For an extensive treatment of this subject, see [16].

In addition to admitting the Heron-type formula (4) for volume, isosceles tetrahedra satisfy
many other characteristic properties (see, for example, [10, p. 90-97][14]). It would be inter-
esting to consider what parallels these other properties may have in the more general context of
reversible tetrahedra.
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