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Abstract

We derive g-analogues of some fundamental theorems of convex geometry, including Helly’s
theorem, the principal kinematic formula, and Hadwiger’s characterization theorem for invariant
valuations.

The essential link between convex geometry and combinatorial theory is the lattice
structure of the collection of polyconvex sets; that is, the collection of all finite unions
of compact convex sets in R”. This connection was highlighted by Rota in [16], where
a valuation characterization theorem and kinematic formula were derived for the
Boolean algebra of subsets of a finite set (see also [10]). In the present note we
pursue this theme in the context of finite vector spaces.

To begin, we review a few well-known theorems of convex geometry, whose com-
binatorial analogues are developed in the sections following.

Helly’s theorem gives a simple condition under which a finite collection of convex
sets is guaranteed to have non-empty intersection [3, 4, 6, 8].

Theorem 0.1 (Helly’s theorem). Let F be a finite family of compact convex sets in
R, Suppose that, for any subset G CF such that |G| <n + 1 (that is, every subset
of cardinality at most n+ 1 of F),

N K+£0.

KeG

Then

N K#0.

KeF

* Research supported in part by NSF grant #DMS 9022140 to MSRI.

0012-365X/98/$19.00 Copyright (© 1998 Elsevier Science B.V. All rights reserved
PIIS0012-365X(97)00031-9



122 D.A. Klain/ Discrete Mathematics 179 (1998) 121-132

In other words, if every n + 1 elements of F' have nonempty intersection, then the
entire family F of convex sets has nonempty intersection.

Denote by ™ the set of all compact convex sets in R”. The set ™" is endowed
with the topology induced by the Hausdorff metric on compact sets in R” (see [18]).
A function @ : #” — R is called a valuation on 4™ if ¢(0)=0, where @ is the empty
set, and

PKUL)=@(K)+ (L) — ¢(KNL) (1

for all K,Le€ 4™ such that KULe X" as well. A valuation ¢ on #™ is said to be
rigid motion invariant if @(gK)= @(K) for all rigid motions (translations, rotations,
and reflections) g of R".

Of particular interest are McMullen’s intrinsic volumes [12;13;18,p.210], which
give invariant extensions of i-dimensional volume (on i-planes) to polyconvex subsets
of R", where n >1i. Denote by G(n,i) the set of all i-dimensional subspaces of R”,
equipped with the invariant (Haar) measure v; normalized so that

V(G i)) = (”) _n

”
i) Wi, _;

where w; is the i-dimensional volume of the unit ball in R'. Denote by ¥ the
i-dimensional volume in R’. The i-volume ¥, is extended to i-th intrinsic volume (also
denoted ¥) on all of A by

HK) = / FK|E) v,
G(n,i)

where K|¢ denotes the orthogonal projection of K onto the subspace ¢

The valuation ¥, which takes the value 1 on all non-empty compact convex sets,
extends to the Euler characteristic on the lattice of polyconvex sets (see, for example,
[10, 13, 18]).

Hadwiger’s volume theorem states that F, is the only continuous rigid motion
invariant valuation on 4™ that vanishes on compact convex sets of dimension less
than #; i.e., on sets with empty interior. This theorem is easily shown to be equivalent
to the following [7, 9, 10, 18]:

Theorem 0.2 (Hadwiger’s characterization theorem). Suppose that ¢ is a continuous
rigid motion invariant valuation on A™". Then there exist cy,cy,...,c, €R such that

(P(K)ZE)CI‘V:'(K)
for all Ke ™.

The last theorem from classical convex geometry for which we present a g-analogue
is the principal kinematic formula and its variations.
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Denote by E, the group of rigid motions of R”; that is, the indirect sum of the
translations group of R” with the orthogonal group O(n).

Theorem 0.3 (Principal kinematic formula). For all polyconvex sets A and K,

n | .
/ Vo(Amgmdg:Z(’;) LAY K). )

E, i=0

The integral in (2) is taken with respect to the indirect sum of the Lebesgue measure
on R” with the Haar probability measure on O(n). For compact convex sets 4 and
K this integral has an evident geometric interpretation as the measure of the set of
g€ E, such that 4NgK # (. Alternatively one may think of (2) as the ‘measure” of all
convex sets gK in R” congruent to K that meet A.

Theorem 0.3 is one of a family of kinematic formulas for valuations on polyconvex
sets, variously attributed in origin to Blaschke [1], Chemn [2], and Santalé [17]. The
techniques of the present work are inspired by those of Hadwiger [7] and Rota [16]
(also [10]). Kinematic formulas remain a topic of current interest in convex and integral
geometry; see [10, 18, 19, 21].

1. The subspace poset

In this section we recall some well-known facts about finite vector spaces.

Let F be a finite field having g elements, where g is a positive power of a prime
number, and let ¥ be vector space over F of dimension »n. Denote by L(}") the partially
ordered set of subspaces of ¥ a (finite) poset ordered by inclusion C. It is well known
that vector sum and intersection of subspaces coincide with least upper bound and
greatest lower bound in the partially ordered set L(V). We denote the elements of
L(V) by lower case letters x, y, etc.

A segment of L(V'), denoted by [x, ¥], where x < y, consists of all elements z& L(V')
such that x <z < y. Every segment [x, y] is isomorphic to the poset L(F(dm»—dimx)y

A chain in L(V') is a linearly ordered subset. A flag F' in L(V') is a maximal chain;
that is, a chain such that if GO F and G is a chain, then G=F. An antichain is
a subset 4 C L(V') such that if x, y€A then neither x C y nor y Cx.

The antichain consisting of all elements of L(}) of dimension % shall be denoted by
Li(V'). The size, or number of elements, of L;(V') is the g-binomial coefficient (also
called the Gaussian coefficient), denoted

(&)
k/q
The number N(V') of automorphisms of J (i.e., bijective linear maps from V to

itself) will be of use in the sections following. To compute N(¥), choose a basis
$1,82,...,8, for ¥ and suppose that g:V — V' is an automorphism. In this case, there



124 D.A. Klain! Discrete Mathematics 179 (1998) 121-132

are g" — 1 possible values for g(s;). Having assigned g(s) ), there remain ¢"” —g possible
values for g(s»), etc. Proceeding in this manner, we obtain

NVY=(q"-1Xg"—q)---(¢"—q""").

In a similar manner we compute the number N(V,k) of automorphisms g of V
that fix a given subspace x& Ly (V), i.e., such that gx =x. Once again choose a basis
51,82,...,8, for ¥ this time so that sy,...,s; 1s a basis for x. Since g(s;)ex for 1 <i <k,
there are

@ -1g* —q) (4" -4

possible assignments for the first £ basis elements, i.e., values for g(s(),...,g(sx).
Meanwhile, there are ¢" — g* remaining possible values for g(s¢.1), and then ¢” — g*~!
remaining possible values for g(sy+,), etc., so that

N(Vk)=(q" —1)g* —q)- - (¢" — ¢ Ng" — d")Ng" —¢""")-- - (¢" — ¢"").

In order to compute the ¢g-binomial coefficient, note that if x€ L, (V'), then gx € L (V')
as well, for any automorphism g of V. Moreover, for x, yeLi(V) there are exactly
N(V,k) automorphisms g such that gx = y. It follows that

n\ _ NV)
<k>,,"N(V,k>'

In other words,

(”) _@ -G ) (" =g (@ g =) (g - 1)
q

kJy (@b =10 ) (gk —g*") T (@ - gFT =) (g 1)
(3)
For positive integers k, denote
k
-1
[k]qzi_1 =l+g+---+g"

and denote

[k]q! = [k]q[k - l]q T {l]q-

By dividing out common factors of ¢ — | in the numerator and denominator of (3),
we obtain

AN [n]g! ’
<k>,, = — A, )

Notice that as ¢ — 1 in (4) we have (;) — (}), the classical binomial coefficient.
For a thorough treatment of the combinatorial theory of finite vector spaces, see
[5, 11]. See also [20, pp. 126-127].
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2. A g-analogue of Helly’s theorem

Our first g-analogue will be a Helly-type theorem for subspaces of a vector space
V of dimension n over F.

Theorem 2.1 (Helly’s theorem for subspaces). Let F be a finite family of subspaces
of V. Suppose that, for any subset G CF such that |G| <n (that is, every subset of
cardinality at most n of F),

dim( N V)>0.

VeaG
Then

dim ( nv > > 0.

VEF

In other words, if every n elements of F' contain a common line through the origin,

then there is (at least one) line # contained in all of the subspaces in F. This theorem
actually follows easily from elementary linear algebra, independently of the field F.

Proof. The proof is by induction on the size |F| of the family 7. If |F|<n then
the theorem holds trivially. Suppose the theorem holds for the case |F|=m for some
m > n. We then consider the case of |[F|=m + 1.
Write F = {x,%2,...,Xn+1 }, and denote
Yi= ﬂ Xj (5)
J#i

Since the theorem is true for families of size m, each y; has positive dimension. That
is, for each i€ {1,...,m + 1} there exists a non-zero vector w; € y;. Since m > n, the
collection {w,ws,...,wpns1} must be linearly dependent. Without loss of generality,
we may then assume that

Wit =CIWL =+ 0 4 CaWhpy,

where not all the coefficients ¢; are zero. But (5) implies that w;€x,,, for all i€
{L,....,m}. It follows that Wy, €Ex,s as well, Since wy) € Y41, We have
n+1

Wit € [ X
j=l

This completes the induction step and the proof of Theorem 2.1. O

As was previously noted, the proof of Theorem 2.1 applies to finite families of
subspaces of a finite-dimensional vector space over any field, not only finite fields. If
we replace the field F with the real numbers R (or the complex numbers C), then
Theorem 2.1 can be shown (by means of a standard compactness argument) to hold
for any (possibly infinite) family F of subspaces satisfying the n-intersection condition.
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3. Valuations on the lattice of order ideals

Define an order ideal to be a subset A of L(V') such that, if x€A4 and y < x then
y€A. An order ideal is a partially ordered set in the induced order of L(}). The set
of maximal elements of an order ideal is an antichain. An order ideal having exactly
one maximal element is called a simplex or a principal ideal.

The (set-theoretic) union and intersection of any number of order ideals is again an
order ideal. Thus, the set J(V') of all order ideals in L(}') is a distributive lattice, and
we can study valuations on J(V').

A function ¢ :J(¥V)— R is called a valuation if @({0})=0, and

P(AUB) + p(ANB)=¢(4) + ¢(B)

for all A,BeJ(V).

For x€ L(V'), denote by X the simplex whose maximal element is x; that is, the set
of all yeL(V') such that y <ux.

It is well-known (or see [10, 15]) that every valuation ¢ on J(V') extends uniquely
to a valuation, again denoted by ¢, on the Boolean algebra P(L(V')) of all subsets of
L(V), which is generated by J(V). Such a valuation is evidently determined by its
value on the one element subsets of P(L(}')); that is, by arbitrarily assigning a value
@({x}) for each xeL(V).

Let x be of dimension &, and let 41,4»,...,4), be the maximal simplices 4; CX
such that 4; #Xx. Then

p({x})=o(x) — p(41 UA U -+ Udy, ).

The right-hand side can be computed in terms of simplices of lower dimension, by the
inclusion—exclusion principle (1). Thus, by induction on the dimension, we have the
following theorem (see also [15]).

Theorem 3.1. Every valuation @ on the distributive lattice J(V') of all order ideals is
uniquely determined by the values ¢(X), x € L(V'). The values ¢(X) may be arbitrarily
assigned.

A valuation ¢ on J(V) is called invariant if it is invariant under the group GL(V)
of automorphisms of the vector space V; that is, if ¢(4)= @(gA4) for every order ideal
A and for every linear isomorphism g: ¥ — ¥ (which induces an action on J(V), also
denoted by g).

Next, we establish the existence of the Euler characteristic. The following is an
immediate consequence of Theorem 3.1.

Theorem 3.2. There exists a unique invariant valuation @ on J(V), called the Euler
characteristic, such thar y(X)=1 for every simplex ¥ with dim (x) > 0, and such that

w{op=0.
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Recall that the Euler characteristic of the distributive lattice J of order ideals of a
poset P is given by

wA4)y=- > w0x), (6)

x€A, x>0

where 0 denotes the minimal element of P and p is the Mdbius function of P (see
[15; 11; 20, p. 120]). The Mébius function of the poset L(V') is given by

H(0,x) = (= 1) mg(":"), (7

For a derivation of (7), see [5, 14, 11] or [20, pp. 126—-127].
For i >0, set

@i(X) = [xNL(V)|,
and extend ¢; to all of J(¥) by Theorem 3.1. For every order ideal 4,
@i(4) = [ANL(V)|.

In other words, the valuation ¢; counts the number of i-subspaces of ¥ contained in an
order ideal. If x € L(V) then the order ideal (¥) is isomorphic (as a lattice) to L(x),
so that

k
Pi(X) = <1> ®)
q

Combining (6) and (7) now yields

n % n &
=3 ¥ (=D = 2 g )
k=1 x€A4, dim{x)=k k=1
for any order ideal 4.
More generally, we have the following g-analogue of Hadwiger’s characterization
theorem for invariant valuations.

Theorem 3.3 (g-basis theorem). The invariant valuations @,...,@, span the vector
space of all invariant valuations ¢ on J(V').

Proof. Suppose that ¢ is an invariant valuation on J(V'). Extend ¢ to all of P(L(}V)).
The extended valuation, which is still denoted ¢, is again invariant. If x and y have the
same dimension in L(V'), then there exists an automorphism g of V such that gx = y.
Therefore, ({x})=¢@({y})=c;, for some constant ¢;. Thus, the valuation

w—ﬁa@

vanishes on all singleton sets {x}, for all x € L(}), and consequently vanishes on all
of P(L(V)). O
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In order to compute the coefficients ¢; given by the g-Basis Theorem 3.3, note that
if x; € Ly(V'), then

o({xc}) = jzlc,-@,-({xm — (10)

If we know the values of ¢({x;}) for each k=1,...,n, we are done.

However, a valuation ¢ is often given in terms of its values on simplices ¥, for
xe€L(V) (as in, for example, Theorem 3.1). In order to compute the values @({x}),
given the values ¢(X), we use Mdbius inversion. Recall that the extension of a valuation
@ on J(V) to all of P(L(V)) is given inductively by

e({0})=0
and
p({x}) = o(X) - Z o({y}).
so that
w(f)=2<3 o({y}) (11)

for all xe L(V'). Applying Mdobius inversion to (11) yields
(p({x})— Z u(y,x)go(y)— Z( l)dxm(x) dim(y) (dlm(\) <m..m) (y) (12)

y<x V\X

Combining (12) with (10) along with the invariance of ¢, we obtain
cr = o({x})
: ) k—dim(y .
S (=1 0T (3,

YEX;

Il

so that

Z(—l)k q("s >< )q)(xo (13)

for each k=1,...,n

4. Kinematic formulas for L(V)

As an application of the g-Basis Theorem 3.3 we shall derive a g-analogue of the
principal kinematic formula (2) for compact convex sets.

One way to construct invariant valuations on J(¥') is the following. Start with any
valuation ¢ on J(V') such that ¢({#})=0, and let B be any order ideal. For any order
ideal 4, define

o(4:B) = 5 Z«p(A NgB),

N(V
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where g ranges over all automorphisms of the vector space V. For fixed 4, the set
function @(4; B) is a valuation in the variable B; in fact, it is an invariant valuation,
since

o(4; goB) = Z ¢(ANggoB)
N(V)

N(V)Z“’( NgB)

for each automorphism go. By Theorem 3.3, the functional ¢(4;B) can be expressed
as a linear combination of the valuations ¢;, with coefficients ¢;(4) depending on A4:

P(4;B) = 3 ci(A)gi(B). (14)

i=1

Meanwhile, for fixed B, the set function ¢(4; B) is a valuation in the variable 4. From
this it follows that each of the coefficients ¢;(4) is a valuation in the variable 4.
Now consider the case when ¢ is an invariant valuation. If so, then

By= L -
m(A,B)—N(V)quqo(Amg N(V)Zm ANB)

1
= — ANB) = 1 A).
N Ey p(gANB) = p(B;A4)
Therefore,

n
@(4;B) = 'ZI cijpi(A);(B).

L=
Since @(4;B)=@(B;A), it is evident that ¢;; =c,;. It turns out that most of the
constants ¢;; are equal to zero. To compute the coefficients c;;, extend the valuation ¢
to the Boolean algebra P(L(V')) generated by J(V'), and let «; denote the value of ¢
on a singleton set in P(L(V)) whose single element is an i-dimensional subspace of ¥

(that is, a; = @({x;}), for any x; =L,(V)).

Theorem 4.1 (General g-kinematic formula). Suppose that ¢ is an invariant valuation
on J(V). For all A,BeJ(V),

n

~1
4B =Y @ 2o A)pi(B). (15)
q

i=1

Recall that the values x; may be obtained from (10) or (13).

Proof. Suppose that x;, y; € L(V') of dimension 7/ and j respectively. Let 4 ={x;} and
B={y;}. For any automorphism g of V, the set ANgB=10 if i#;. If i=, then
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AnNgB=0 if x;#gy;, and there are N(V,i) automorphisms g of ¥ such that x; =gy;.
Hence, we have

1l -  N(W) (Y
w(A’B)_W%‘(P(AMB)— NV @(4) = (l.)q ;.

Meanwhile, @y(4)=1 if k=i and is otherwise equal to zero. Similarly, @x(B)=1 if
k=j and is otherwise equal to zero. Hence,

p(4;B) = ‘ZI cijpi(A);(B) = ¢
i,j=

Therefore, ¢;;= ('[.')q_loc,- if i=j and is otherwise equal to zero. [

The case ¢ =y is of particular interest. The Euler formula (9) implies that y({x;})=
(—1)"+'q(3). Theorem 4.1 then specializes to the following g-analogue of Theorem 0.3.

Theorem 4.2 (Principal ¢-kinematic formula). For all A,B€J(V),

" -1
N(IV) S uangs) =3 (—1)tq®) ('Z) @(A)pi(B). (16)
g i=1

q

The probability that a randomly chosen /-simplex ¥, shall meet a fixed k-simplex Xy;
i.e., that a randomly chosen /-subspace y, meets a fixed k-subspace x; with dim(x; N y,)
>0; can now be computed by combining (8) and (16) to yield

1 PR wr oy (n\ R (1
W;A(kag}ﬁ) = ;(‘” q@(l_)q (l)q(i)q. (17)

By combining Theorems 4.1 and 4.2 with some elementary probabilistic reasoning
one can obtain polynomial identities. For example, if £ +/ > n, then dim(x; Ngy,) > 1
for all k-simplices X;, /-simplices ¥,, and automorphisms g of V. In other words,
dim(x; Mgy;) > 1 with unit probability. It follows that

3y (é')(”)'(") (1) -1 (18)
i=1 ! i 9 i q i q ’

whenever kK + 1/ > n.

For the case of k + /< n, we compute instead the probability that dim(xx Ngy,) =0,
for a random automorphism g¢. Let s1,...,s, be a basis for ¥ such that sy,...,s; is a ba-
sis for y;. For dim(x; Ngy,) =0 to hold, we require gs; € ¥ —x;, of which there are ¢" —
g* choices. There then remain ¢” — g**! possible values for gs,, etc., so that there are

(" — g )g"—¢"") - (g" — g ),

choices of values for gs|,...,gs;. Having chosen the values of gs),...,¢s;, which span
a space of dimension /, there remain ¢" —q' possible values for gs;., and then ¢"—g'*!
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possible values for gs;y,, and so on, up to g" —g"~! possible values for gs,. It follows
that there are

@ -4 @ =" " — g (g" - q"")

automorphisms g of ¥ such that dim(x; N gy,) = 0. Hence, the probability that dim(x; N
gy,;)=0 for a random automorphism g is

@ =4 =¢"*""Ng" - d)- - (g"—¢"")
N(V)

(" =4y (q"—¢""""")g"~q") - (g"—¢q"")
("= 1Xq"—q)---(¢"—q" 1)

_ o w@ - ) (g g
(g"—1)g"—q)--(¢"~q'"")

_ k/(q”_k — (g = 1) (g o
(qn _ ])(qn—l — 1)...(qn~1+1 _ 1)

o =kl [n— 1, [k],!
n—k—1,0 [n),! [kl

=), ()
k q k q
It then follows from (17) that
n -1 -1
. [ n kN (1 n n—1
) (0 Qe o
12:1: Hg \M/g\t/q k q kJq
Note that (19) is consistent with (18), since
n—l)
=0
("),

whenever & 4/ > n. By adding the term corresponding / = 0 to both sides of (19) and
multiplying by —1 we obtain the following reformulation.

Theorem 4.3.

n 1 o
“1yg (" k 1>: ki <n~l>
Z-Z:oj( e (i>q (il(iq T\l \ k) (20)

for all positive integers n,q and all 0<k, [<n.

Remark. After setting ¢ =1 the formulas (15) and (16) reduce to discrete kinematic
formulas for random simplices in the Boolean algebra of subsets of a finite set S,
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provided ‘automorphisms’ g are replaced with permutations on the elements of S.
Egs. (18)—(20) also reduce to analogous equations involving the classical binomial
coefficients. For a detailed description, see [10].
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