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Abstract Euler’s formula is used to derive relations of Dehn-Sommerville type
for a triangulated manifold with boundary.

In the present note we derive a family of Dehn-Sommerville type relations for tri-
angulated manifolds with boundary. These relations generalize the classical Dehn-
Sommerville equations for spherical simplicial complexes. As a consequence of these
relations we obtain formulas for the enumeration of vertices (0-simplices) lying in the
relative interior of triangulated manifold with boundary. Analogous enumerative formu-
las are obtained for higher dimensional faces.

Let M be a compact triangulated manifold with boundary ∂M . Denote by int(M) the
(topological) relative interior of M ; that is int(M) = M − ∂M . Denote by K(M) the
simplicial complex whose geometric realization is the manifold M . For k = 0, 1, . . . , m
and any subset L ⊆ K(M), denote fk(L) the number of k-dimensional simplices con-
tained in L. Recall that the Euler characteristic χ(L) of a subcomplex (or any subset)
L ⊆ K(M) is defined by

χ(L) =
m∑

i=0

(−1)ifi(L).

Our main result is the following.

Theorem 1.1 Let M be an m-dimensional triangulated manifold with boundary. For
k = 0, . . . , m

fk(M)− fk(∂M) =
m∑

i=k

(−1)i+m

(
i + 1

k + 1

)
fi(M). (1)

Theorem 1.1 can be viewed as an Euler relation for the valuations fk on the lattice of
subcomplexes of K(M). For a discussion of valuations, see [5, 7]. This point of view is
exploited more extensively for polytopes in [4], and also (in a different way) in [6].

1



For σ ∈ K(M) define the star of σ by

St σ = {τ ∈ K(M) | σ ⊆ τ}.

For σ ∈ K(M), let σ denote the set of all faces of σ, and define the closed star of σ

St σ =
⋃

τ∈St σ

τ .

Let Kσ denote the subcomplex of K(M) given by

Kσ = St σ − St σ

The following lemma will be used in the proof of Theorem 1.1.

Lemma 1.2 If σ ∈ K(M) then

χ(Kσ) =

{
1 + (−1)m+1 if σ * ∂M
1 if σ ⊆ ∂M

(2)

Proof: This is an immediate consequence of the homological properties of a manifold
with boundary, since the geometric realization of Kσ = St σ−St σ is homotopy equivalent
a closed m-dimensional ball with a point removed. (See, for example, [8].) ¥

We are now able to prove Theorem 1.1.

Proof of Theorem 1.1: Since St σ is star-shaped, we have χ(St σ) = 1. Since St σ =
St σ ∪Kσ, a disjoint union, it follows from Lemma 1.2 that

(−1)m(χ(St σ)) =

{
1 if σ * ∂M
0 if σ ⊆ ∂M

for all σ ∈ K(M). It follows that

fk(M)− fk(∂M) =
∑
{σ∈K(M) : dim(σ)=k}(−1)m(χ(St σ))

=
∑
{σ∈K(M) : dim(σ)=k}

∑m
i=0(−1)i+mfi(St σ)

(3)

In the sum (3) a cell τ ∈ K(M) of dimension i is counted once for each σ ∈ K(M) such
that τ ∈ St σ; that is, once for each k-cell σ ⊆ τ . Since each τ ∈ K(M) of dimension

i contains
(

i+1
k+1

)
faces of dimension k, each face τ of dimension i in K(M) is counted(

i+1
k+1

)
times in the sum (3). It follows that

fk(M)− fk(∂M) =
m∑

i=k

(−1)i+m

(
i + 1

k + 1

)
fi(M).
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Note also that if k = 0 then

f0(M)− f0(∂M) = f0(int(M)) = (−1)m(f0(M)− 2f1(M) + 3f2(M)− · · ·), (4)

the number of vertices of the triangulation K(M) that lie in the relative interior of the
manifold M .

Corollary 1.3 (Classical Dehn-Sommerville Equations) Suppose that M is an m-
dimensional triangulated manifold (without boundary). Then

fk(M) =
m∑

i=k

(−1)i+m

(
i + 1

k + 1

)
fi(M),

for k = 0, 1, . . . , m.

Note that setting k = −1 in Corollary 1.3 yields the Euler formula for M (up to a change
of sign). For this reason the Euler characteristic χ(M) is also sometimes denoted f−1(M).
The family of formulas (1.3) applied to a triangulated sphere give the classical Dehn-
Sommerville equations for the spherical simplicial complex (see, for example, [1, 2, 9]).

We conclude this section with a relation dual (and equivalent) to that of Theorem 1.1.

Corollary 1.4 Let M be an m-dimensional triangulated manifold with boundary ∂M .
Then

fk(M) =
m∑

i=k

(−1)i+m−1

(
i + 1

k + 1

)
(fi(M)− fi(∂M)),

for k = 0, 1, . . . , m.

Proof: Since ∂(∂M) = ∅, we can apply Theorem 1.1 (or Corollary 1.3) to the subcom-
plex that triangulates ∂M (a manifold of dimension m− 1) to obtain

fk(∂M) =
m−1∑

i=k

(−1)i+m−1

(
i + 1

k + 1

)
fi(∂M). (5)

On summing (5) and (1) we obtain

fk(M) =
m∑

i=k

(−1)i+m−1

(
i + 1

k + 1

)
(fi(M)− fi(∂M)).

¥

See any of [1, 2, 3, 9] for a more detailed treatment of the Dehn-Sommerville equations
and their application to combinatorial geometry.
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