The Minkowski Problem for Polygons

Daniel A. Klain

Department of Mathematical Sciences University of Massachusetts Lowell Lowell, MA 01854 USA Daniel_Klain@uml.edu

Abstract We describe a trivial solution to the Minkowski problem for polygons in the Euclidean plane.

Given a collection of unit normals u_i and corresponding edge lengths $\alpha_i > 0$, one might ask whether a convex polygon P exists whose boundary is described by the given normals and lengths. This question is known as the *Minkowski Problem*. While the Minkowski Problem (actually a theorem) is deep and non-trivial in higher dimensions (see, for example, [BF48, Sch93]), it is almost trivial in the planar case: By rotating the normals counterclockwise by 90° and lengthening each by its given edge length, we transform the normals into *actual edges*. Assuming we have listed the normals in counterclockwise order, we can just lay these oriented edges end-to-end and construct the polygonal closed curve that describes the desired polygon in a unique way up to translation; i.e. depending only on where we set down the pen to draw the first edge.

The details, which require some bookkeeping, are described as follows.

Theorem 1.1 (Minkowski Existence Theorem) Suppose $u_1, u_2, \ldots, u_k \in \mathbb{R}^2$ are unit vectors that span \mathbb{R}^2 , and suppose that $\alpha_1, \alpha_2, \ldots, \alpha_k > 0$. There exists a polygon $P \in \mathcal{P}^2$ having edge unit normals u_1, u_2, \ldots, u_k , and corresponding edge lengths $\alpha_1, \alpha_2, \ldots, \alpha_k$, if and only if

$$\alpha_1 u_1 + \dots + \alpha_k u_k = 0. \tag{1}$$

Moreover, such a polygon P is unique up to translation.

Proof: Suppose a polygon P has boundary data given by the normals u_i and edgelengths α_i . Let ϕ denote the counter-clockwise rotation of \mathbb{R}^2 by the angle $\pi/2$. For each i let $v_i = \phi(\alpha_i u_i)$. Then each v_i is congruent to the *i*-th edge of the polygon P. Since the boundary of a convex polygon is a simple closed curve, we have

$$v_1 + \dots + v_k = 0.$$

On applying ϕ^{-1} to this identity, we obtain (1).

Conversely, suppose that a family of unit vectors u_i and positive real numbers α_i satisfy (1), where the vectors u_i span \mathbb{R}^2 . As above, let $v_i = \phi(\alpha_i u_i)$ for each *i*. Assume also that the vectors u_i (and therefore, the vectors v_i) are indexed in counterclockwise order around the circle. We will construct a polygon P having boundary data given by the normals u_i and edge-lengths α_i . The condition (1) implies that $v_1 + \cdots + v_k = 0$.

Denote

$$x_1 = v_1$$

$$x_2 = v_1 + v_2$$

$$\vdots$$

$$x_k = v_1 + \dots + v_k = o$$

and let P denote the convex hull of the points x_1, x_2, \ldots, x_k (where $x_k = o$, the origin). We will show that each x_i is an extreme point of P. It will then follow that the x_i are the vertices of P, so that the edges of P are congruent to the vectors v_i , as required.

To show that each x_i is an extreme point, it is sufficient to consider the case of $x_k = o$. Moreover, since convex dependence relations are invariant under rigid motions, we may assume without loss of generality that v_1 points along the positive x-axis. Let j = (0, 1). Note that $x_1 \cdot j = v_1 \cdot j = 0$, and that if $v_s \cdot j < 0$ and $s \le t \le k$ then $v_t \cdot j < 0$, since the v_i are ordered in counter-clockwise order. Moreover, since $\sum v_i = o$ and since the v_i span \mathbb{R}^2 , we must have $v_2 \cdot j > 0$.

Now suppose that o is not an extreme point of P. In this case, $o = a_1x_1 + \cdots + a_kx_k$, where each $a_i > 0$ and $a_1 + \cdots + a_k = 1$. Note that

$$0 = o \cdot j = \sum_{i} a_i (x_i \cdot j).$$
⁽²⁾

Since $x_2 \cdot j > 0$, it follows from (2) that some $x_s \cdot j < 0$. Because $v_i \cdot j < 0$ for all $i \ge s$, we have

$$0 = o \cdot j = x_k \cdot j = \left(x_s + \sum_{i>s} v_i\right) \cdot j < 0,$$

a contradiction. It follows that o (and similarly each other x_i) must be an extreme point of P. It also follows that $x_s \cdot j \ge 0$ for all s, so that v_1 (and similarly each other v_i) must be parallel to edges of P.

Since we have given an explicit reconstruction of the boundary of P from the normals u_i and edge lengths α_i , starting from a base point, in this case the origin o, it also follows that such a polygon P is unique up to choice of base point, that is, up to translation.

References

- [BF48] T. Bonnesen and W. Fenchel. Theorie der Konvexen Körper. Chelsea, New York, USA, 1948.
- [Sch93] R. Schneider. Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, New York, 1993.