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Abstract The Minkowski existence Theorem for polytopes follows from Cramer’s Rule when
attention is limited to the special case of simplices.

It is easy to see that a convex polygon in R2 is uniquely determined (up to translation) by the
directions and lengths of its edges. This suggests the following (less easily answered) question in
higher dimensions: given a collection of proposed facet normals and facet areas, is there a convex
polytope in Rn whose facets fit the given data, and, if so, is the resulting polytope unique? This
question (along with its answer) is known as the Minkowski problem.

For a polytope P in Rn denote by V (P ) the volume of P . If Q is a polytope in Rn having
dimension strictly less than n, then denote v(Q) the (n − 1)-dimensional volume of Q. For any
non-zero vector u, let Pu denote the face of P having u as an outward normal, and let Pu denote
the orthogonal projection of P onto the hyperplane u⊥.

The Minkowski problem for polytopes concerns the following specific question: Given a collection
u1, . . . , uk of unit vectors and α1, . . . , αk > 0, under what condition does there exist a polytope P
having the ui as its facet normals and the αi as its facet areas; that is, such that v(Pui) = αi for
each i?

A necessary condition on the facet normals and facet areas is given by the following proposition
[BF48, Sch93].

Proposition 1 Suppose that a convex polytope P ⊆ Rn has facet normals u1, u2, . . . , uk and corre-
sponding facet areas α1, α2, . . . , αk. Then

α1u1 + · · ·+ αkuk = 0. (1)

Proof: If u ∈ Rn is a unit vector, then |ui ·u|αi is equal to the area of the orthogonal projection of
the i-th facet of P onto the hyperplane u⊥. Summing over all facets whose outward normals form
an acute angle with u we obtain ∑

ui·u>0

(ui · u)αi = v(Pu),

where Pu denotes the orthogonal projection of P onto the hyperplane u⊥. Summing analogously
over all facets whose outward normals form an obtuse angle with u yields the value −v(Pu). (In
other words, P casts the same shadow onto the hyperplane u⊥ from above as from below.)

Let w = α1u1 + · · ·+ αkuk. It now follows that

w · u =
∑

i

(ui · u)αi =
∑

ui·u>0

(ui · u)αi +
∑

ui·u<0

(ui · u)αi = v(Pu)− v(Pu) = 0.

In other words, w · u = 0 for all u, so that w = 0. ¥
Proposition 1 illustrates a necessary condition for the existence of a polytope having a given set of

facet normals and facet areas. Minkowski discovered that the converse of Proposition 1 (along with
some minor additional assumptions) is also true. In other words, the condition (1) is both necessary
and (almost) sufficient, and moreover, determines a polytope that is unique up to translation. To
be more precise, we have the following theorem.
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Theorem 2 (Minkowski Existence Theorem) Suppose u1, . . . , uk ∈ Rn are unit vectors that
span Rn, and suppose that α1, . . . , αk > 0. Then there exists a polytope P ⊆ Rn, having facet unit
normals u1, . . . , uk and corresponding facet areas α1, . . . , αk, if and only if

α1u1 + · · ·+ αkuk = 0.

Moreover, this polytope is unique up to translation.

For the classical proof of this theorem, see either of [BF48, Sch93]. Once the surface data are
suitably defined, the Minkowski problem can also be generalized to the context of compact convex
sets [Sch93] as well as to the p-mixed volumes of the Brunn-Minkowski-Firey theory [Lut93].

This note we addresses the following limited version of Minkowski’s existence theorem.

Theorem 3 (Minkowski Existence Theorem for Simplices) Suppose that u0, u1, . . . , un ∈ Rn

are unit vectors that span Rn, and suppose that α0, α1, . . . , αn > 0. Then there exists a simplex
S ⊆ Rn, having facet unit normals u0, u1, . . . , un and corresponding facet areas α0, α1, . . . , αn, if
and only if

α0u0 + α1u1 + · · ·+ αnun = 0.

Moreover, this simplex is unique up to translation.

Evidently Theorem 3 follows immediately from Theorem 2. Unfortunately the proof of the
Minkowski Existence Theorem 2 is somewhat involved, while it is much easier to prove Theorem 3
directly, considering only the special case of simplices. Indeed, for simplices both existence and
uniqueness follow more or less from Cramer’s Rule.

Proof of Theorem 3: To begin, suppose that S ⊆ Rn is a simplex having facet unit normals
u0, u1, . . . , un and corresponding facet areas α0, α1, . . . , αn. It follows from the conditions on the ui

that S is non-degenerate, having positive volume.

Without loss of generality, suppose that the origin is a vertex of S, and denote by x1, . . . , xn the
remaining vertices of S, arranged so that the vertex xi lies opposite the ith facet. Let A denote the
matrix whose columns are given by the vectors xi, and suppose that the xi are ordered so that A
has positive determinant. In this instance det(A) = n! V (S), where V (S) denotes the volume of the
simplex S. This follows from a combination of the base-height formula for the volume of a cone and
induction on dimension.

Let c(A) denote the cofactor matrix of A. Cramer’s Rule asserts that

c(A)T A = det(A)I, (2)

where I is the n × n identity matrix. (See [Art91], for example, or any traditional linear algebra
text.)

Let zi denote the ith column of the matrix c(A). The identity (2) asserts that zi ⊥ xj for j 6= i.
It follows that zi is parallel to the facet normal ui, and that zi = −|zi|ui, since zi · xi = det(A) > 0,
while ui points out of the simplex (away from the vertex xi). Meanwhile, (2) also asserts that

zi · xi = det(A) = n! V (S),

so that
−|zi|(ui · xi) = zi · xi = n! V (S) = n!

1
n

αi(−ui · xi),

where the final identity follows from the base-height formula for the volume of a cone, using the ith
facet of S as the base. Hence, |zi| = αi(n− 1)! and

zi = −αi(n− 1)! ui.

In other words, the facet normals u1, . . . , un and corresponding facet areas αi are determined by
the columns zi of the cofactor matrix c(A). The remaining facet normal u0 and area α0 is then
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determined by Minkowski’s condition (1) in Proposition 1. This encoding of facet data into the
cofactor matrix allows a simple proof of both existence and uniqueness for the simplex S given the
data {ui} and {αi}.

To prove the uniqueness of S, note that c(A) = det(A)A−T , by Cramer’s Rule (2). It follows
that det(c(A)) = det(A)n−1 and that

A = det(A)c(A)−T = det(c(A))
1

n−1 c(A)−T .

In other words, if two non-singular matrices A and B have the same cofactor matrix c(A) = c(B),
then A = B. It follows that if two simplices S and T each have the origin as a vertex and share the
same facet normals and corresponding facet areas (for those facets incident to the origin), then S
and T must have the same vertices, so that S = T .

More generally, if two simplices have the same facet normals and corresponding facet areas then
they must be translates of one another.

Finally, to prove the existence of a simplex having the given facet data, suppose that u0, u1, . . . , un ∈
Rn are unit vectors that span Rn, that α0, α1, . . . , αn > 0, and that

α0u0 + α1u1 + · · ·+ αnun = 0.

Let C denote the matrix having columns −αi(n−1)! ui for i > 0. If A is the matrix having cofactor
matrix C, then the columns of A, along with the origin, yield the vertices of a simplex having facet
normals ui and corresponding facet areas αi. ¥

Remark: The reader may observe that the preceding argument could be expressed more
compactly in the language of Grassmann (alternating) tensors, thereby obscuring the role of Cramer’s
Rule in the proof.
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