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1. Linear inequalities

Throughout this course we have considered systems of linear equations in one guise
or another. Consider, for example, the system

(1)
x1 + 3x2 = 18
x1 + x2 = 8

2x1 + x2 = 14

in the two variables x1, x2. Using Gaussian elimination, or even just a little intuition,
you can quickly determine that this system of equations is inconsistent; that is, it
has no solutions. Equivalently, the three straight lines described by the system do
not meet at a common point.

Suppose instead we consider the related system of linear inequalities:

x1 + 3x2 ≤ 18

x1 + x2 ≤ 8(2)

2x1 + x2 ≤ 14

Instead of a straight line in R2, each of these inequalities determines a half-plane.
The set of points (x1, x2) that satisfy this system are points that lie in all three
half-planes, that is, the intersection of three half-planes. This set may be bounded
or unbounded, shaped like a polygon or a polygonal cone. If we add two more
conditions:

x1 ≥ 0 x2 ≥ 0
then the system (2) describes a pentagonal region on the first quadrant of R2, with
one edge for each of the five inequalities:

x1 + 3x2 ≤ 18
x1 + x2 ≤ 8

2x1 + x2 ≤ 14(3)

x1 ≥ 0 x2 ≥ 0

Exercise: Try to draw this region! Can you list the coordinates of the five vertices
(corners) of this pentagonal region? (Start by drawing the lines determined by each
of the equations in (1) above.)

A typical problem in linear optimization runs as follows. Suppose a factory makes
two kinds of candy. Each month the factory will produce x1 cases of candy A and
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x2 cases of candy B. The factory uses three main ingredients for its candies: sugar,
palm oil, and cocoa.

To make a case of candy A, the factory uses 100 units of sugar, 100 units of palm
oil, and 200 units of cocoa. To make a case of candy B, the factory uses 300 units
of sugar, 100 units of palm oil, and 100 units of cocoa. Suppose that the factory has
on hand 1800 units of sugar, 800 units of palm oil, and 1400 units of cocoa. What
possible combinations of candy A and candy B can be produced this month?

Since x1 and x2 count cases of candy, we may assume that x1, x2 ≥ 0. Since we have
only 1800 units of sugar available, we are subject to the constraint

100x1 + 300x2 ≤ 1800

If instead we convert all of our measures to “hundreds of units,” then

x1 + 3x2 ≤ 18

More generally, the constraints governing all of our options for candy production
are now given by the system of inequalities (3).

Now the question is, how much should we produce? For example, we could pro-
duce only candy A, and use up all of the cocoa to make 7 cases. But this would
leave us with a lot of palm oil and sugar leftover. Or we could produce only candy
B (how much at most?).

If you think about the possibilities, you will find no perfect answer; that is, for
every choice of values for x1 and x2, there will be some raw materials leftover. This
corresponds to the fact that the linear system (1) is inconsistent.

Suppose that market researchers tell us we can sell each case of candy A for $5 and
each case candy B for $4 dollars. If we make x1 cases of candy A and x2 cases of
candy B then our revenue x̂ will be given by the function

x̂ = 5x1 + 4x2.

The question now is: how can we maximize revenue? More specifically, at which
point of the polygon (3) is the function 5x1 + 4x2 maximized?

The answer is hinted at by the following theorem, which we will not prove.

Theorem 1 (Extreme value theorem). If x̂ = f (x1, x2, . . . , xn) is a linear function defined
on a bounded polyhedron in Rn, then x̂ will attain its maximum (also minimum) value at
some vertex of the polyhedron.

This saves a lot of work. To find the maximum we could just list all the vertices,
evaluate 5x1 + 4x2 at each one, and pick the largest. For the candy problem above
the constraint set has only 5 vertices, which we can find by drawing a picture. (You
should do this as an exercise.)
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Unfortunately this is not an acceptable method in practice. First of all, we cannot
easily draw a picture if there are 3 variables instead of 2. And we cannot draw a
picture at all if there are 4+ variables. Moreover, it’s not even clear how we would
find all the vertices. An authentic factory or allocation system might deal with
hundreds of variables and a similar number of constraints, so we’ll need to find a
better way.

2. The simplex method (with equations)

The problem of the previous section can be summarized as follows.

Maximize the function x̂ = 5x1 + 4x2
subject to the constraints:

x1 + 3x2 ≤ 18
x1 + x2 ≤ 8

2x1 + x2 ≤ 14

where we also assume that x1, x2 ≥ 0.

Linear algebra provides powerful tools for simplifying linear equations. The first step
in dealing with linear inequalities is to somehow transform them into equations, so
that the technique of Gaussian elimination can be used.

For this purpose we introduce slack variables. Here is the idea. Instead of saying

x1 + 3x2 ≤ 18

with x1, x2 ≥ 0, we will say
x1 + 3x2 + x3 = 18

with x1, x2, x3 ≥ 0. In other words, the new positive variable x3 is “taking up the
slack”. Doing this for each constraint inequality enables us to transform the problem
above into the following:

Maximize the function x̂ = 5x1 + 4x2
subject to the constraints:

(4)
x1 + 3x2 + x3 = 18

x1 + x2 + x4 = 8
2x1 + x2 + x5 = 14

where we also assume that x1, x2, x3, x4, x5 ≥ 0.

Note that we have introduced three new slack variables x3, x4, x5, one for each of the
constraining inequalities in the original problem. The original variables x1, x2 are
called the basic variables.
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We summarize (4) as follows:

(5)

5x1 +4x2 = x̂
x1 +3x2 +x3 = 18
x1 +x2 +x4 = 8

2x1 +x2 +x5 = 14

x1, x2, x3, x4, x5 ≥ 0

Begin by assuming that x1 = x2 = 0. This satisfies the equations (5) if we set x3 =
18, x4 = 8, and x5 = 14. However, this is clearly not the answer to our optimization
problem, since we are producing no candy at all! We have x̂ = 5x1 + 4x2 = 0 in
this case. To maximize x̂ we have to increase either x1 or x2 (or both). Let’s try to
increase x1, being careful not to violate the rules imposed by (5).

In the first equation we could set x1 = 18 and x2 = x3 = 0.
In the second equation we could set x1 = 8 and x2 = x4 = 0.
In the third equation we could set x1 = 7 and x2 = x5 = 0.

Remember: We cannot set x1 so large that any of the other variables become nega-
tive! This constrains how much x1 can grow. Since all of the above conditions must
be satisfied, we are forced to go with the smallest choice, and set x1 = 7. To evaluate
this case, we pivot on the variable x1 in the last equation, using Gaussian elimination
to get a new set of constraints:

(6)

3
2 x2 −5

2 x5 = x̂− 35

5
2 x2 +x3 −1

2 x5 = 11
1
2 x2 +x4 −1

2 x5 = 1

x1 +1
2 x2 +1

2 x5 = 7

Now we can set x2 = x5 = 0 to obtain x1 = 7, x3 = 11, x4 = 1 and x̂ − 35 = 0. In
terms of our original problem, we have

(x1, x2) = (7, 0) and x̂ = 35.

We have found a vertex (7, 0) for the polygon at which x̂ = 35. In other words, our
constraints will allow us to produce 7 hundred units of candy A and zero units of
candy B giving us revenues of 35 hundred. Can we do better?

To determine this, check the objective equation, the top equation above the bar in (6).
Since the coefficient of x2 is positive (namely, +3

2 ), increasing x2 will increase the
whole sum.

The three equations below the bar in (6) constrain how large x2 can become, since
the remaining variable must never become negative.
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In the first equation we could set x2 = 22
5 and x3 = x5 = 0.

In the second equation we could set x2 = 2 and x4 = x5 = 0.
In the third equation we could set x2 = 14 and x1 = x5 = 0.

The most stringent condition is the second, since 2 < 22
5 < 14. So we pivot again,

this time on the variable x2 in the second constraint equation (beneath the bar). This
pivoting now results in a new set of equations:

(7)

−3x4 −x5 = x̂− 38
x3 −5x4 +2x5 = 6

x2 +2x4 −x5 = 2
x1 −x4 +x5 = 6

Setting x4 = x5 = 0 yields x1 = 6, x2 = 2, x3 = 11 and x̂− 38 = 0. In terms of our
original problem, we have

(8) (x1, x2) = (6, 2), and x̂ = 38.

The point (6, 2) is a vertex for the constraint polygon at which x̂ = 38. In other
words, our constraints will allow us to produce 6 hundred units of candy A and 2

units of candy B giving us revenues of 38 hundred.

Can we do still better? No! Notice in the objective function on top of the bar in (7)
all the coefficients on the left side are either zero or negative:

−3x4 − x5 = x̂− 38 =⇒ x̂ = 38− 3x4 − x5

If we increase either x4 or x5 then x̂ will only decrease. Therefore, the maximum
point for our revenue function x̂ is given by (8).

3. The simplex method (with tableaux)

The discussion of the previous section is cluttered with many variables. When
solving linear equations, it is customary to drop the variables and perform Gaussian
elimination on a matrix of coefficients. The technique used in the previous section
to maximize the function x̂, called the simplex method, is also typically performed
on a matrix of coefficients, usually referred to (in this context) as a tableau. The
sequence of tableaux we used to solve the candy factory problem are the following:

5 4 0 0 0 x̂
1 3 1 0 0 18
1 1 0 1 0 8

2 1 0 0 1 14

=⇒

0 3
2 0 0 − 5

2 −35 + x̂

0 5
2 1 0 − 1

2 11

0 1
2 0 1 − 1

2 1

1 1
2 0 0 1

2 7

=⇒

0 0 0 −3 −1 −38 + x̂
0 0 1 −5 2 6
0 1 0 2 −1 2
1 0 0 −1 1 6

In each step the circled position is the pivot for the next step.

We will now do an example using only tableaux.
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Maximize the function x̂ = 2x1 + x2
subject to the constraints:

x1 + x2 ≤ 40
3x1 + x2 ≤ 90
x1 + 2x2 ≤ 60

x1, x2 ≥ 0.

Solution: The initial tableau is

variables x1 x2 x3 x4 x5

objective function 2 1 0 0 0 x̂
1 1 1 0 0 40

constraints 3 1 0 1 0 90
1 2 0 0 1 60

This tableau corresponds to setting the basic variables x1 = x2 = 0 and slack vari-
ables x3 = 40, x4 = 90, and x5 = 60. At this point x̂ = 0.

The positive values 2 and 1 in the top row tell us we can either try to increase x1 or
x2. Let’s increase x1. The three rows beneath the second bar give the constraints.

First row: x1 ≤ 40.
Second row: x1 ≤ 90

3 = 30.
Third row: x1 ≤ 60.

All of the constraints must be satisfied, so we set x1 = 30 by pivoting at the second
constraint row, first column, to obtain

x1 x2 x3 x4 x5

2 1 0 0 0 x̂
1 1 1 0 0 40
3 1 0 1 0 90
1 2 0 0 1 60

=⇒

x1 x2 x3 x4 x5

0 1
3 0 −2

3 0 −60 + x̂
0 2

3 1 −1
3 0 10

1 1
3 0 1

3 0 30
0 5

3 0 −1
3 1 30

We still have a positive value 1
3 in the top row, which means we can increase x2 as

well. Once again, the three rows beneath the second bar give the constraints.

First row: x2 ≤ 3
2(10) = 15.

Second row: x2 ≤ 3(30) = 90.
Third row: x2 ≤ 3

5(30) = 18.
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The most strict of the conditions is the first, so we pivot at the circled position to
obtain:

x1 x2 x3 x4 x5

0 1
3 0 −2

3 0 −60 + x̂

0 2
3 1 −1

3 0 10
1 1

3 0 1
3 0 30

0 5
3 0 −1

3 1 30

=⇒

x1 x2 x3 x4 x5

0 0 −1
2 −

1
2 0 −65 + x̂

0 1 3
2 −

1
2 0 15

1 0 −1
2

1
2 0 25

0 0 −5
2

1
2 1 5

Since all of the top row values are negative, we are finished. The value of x̂ is
maximized at the vertex (x1, x2) = (25, 15), where x̂ = 65.

Exercises:

1. Use the simplex method to maximize the function x̂ = 5x1 + 2x2 subject to the
constraints:

4x1 + 2x2 ≤ 32
2x1 + x2 ≤ 18

x1 + x2 ≤ 12
x1 + 4x2 ≤ 36

x1, x2 ≥ 0.

2. Use the simplex method to maximize the function x̂ = 3x1 + 2x2 subject to the
constraints:

x1 + 2x2 ≤ 24
x1 + x2 ≤ 21
−x1 + x2 ≤ 9

x1, x2 ≥ 0.

3. Sketch the constraint polygon from problem 1. above.

4. Sketch the constraint polygon from problem 2. above. Which vertices did you
visit while running the simplex method in problem 2.?
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5. Use the simplex method to maximize the function x̂ = 2x1 + x2 + x3 subject to
the constraints:

x1 + x2 + x3 ≤ 40
2x1 + x3 ≤ 30

x1 + x2 + 3x3 ≤ 60
x1 + 4x2 + x3 ≤ 120

x1, x2, x3 ≥ 0.

6. Use the simplex method to maximize the function

x̂ = x1 + 5x2 + x3

subject to the constraints:

x1 + 3x2 + x3 ≤ 4
2x2 + x3 ≤ 2
x1, x2, x3 ≥ 0.

7. Use the simplex method to maximize the function x̂ = 3x1 + 2x2 + x3 subject to
the constraints:

x1 ≤ 10
x2 ≤ 10
x3 ≤ 10

x1 + x2 + x3 ≤ 15
x1, x2, x3 ≥ 0.

8. Sketch the constraint polyhedron from problem 6. above. Which vertices did you
visit while running the simplex method in problem 6.?

9. Howard wants to increase his daily intake of protein. He has foolishly decided to
eat only steak, chicken, and fish. Each serving of steak has 15g of protein and costs
$8. Each serving of chicken has 10g of protein and costs $5. Each serving of fish has
20g of protein and costs $4. Howard has a daily budget of $40. Moreover, he likes
variety and will not eat more than 4 servings of fish, nor will he eat more than 7

servings of chicken and steak combined. The problem is to find a diet acceptable to
Howard that maximizes his daily protein intake.

Describe this problem as a linear optimization problem, and set up the inital tableau
for applying the simplex method. (But do not solve – unless you really want to, in
which case it’s ok to have partial (fractional) servings.)
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Answers to Selected Exercises:

1.
x1 x2 x3 x4 x5 x6

5 2 0 0 0 0 x̂

4 2 1 0 0 0 32
2 1 0 1 0 0 18
1 1 0 0 1 0 12
1 4 0 0 0 1 36

=⇒

x1 x2 x3 x4 x5 x6

0 − 1
2 − 5

4 0 0 0 x̂− 40

1 1
2

1
4 0 0 0 8

0 0 − 1
2 1 0 0 2

0 1
2 − 1

4 0 1 0 4

0 7
2 − 1

4 0 0 1 28
so that x̂ = 5x1 + 2x2 is maximized at (x1, x2) = (8, 0) and x̂ = 40.

2. First solution
x1 x2 x3 x4 x5

3 2 0 0 0 x̂
1 2 1 0 0 24

1 1 0 1 0 21
−1 1 0 0 1 9

=⇒

x1 x2 x3 x4 x5

0 −1 0 −1 0 x̂− 63
0 1 1 −1 0 3
1 1 0 1 0 21
0 2 0 1 1 30

so that x̂ = 3x1 + 2x2 is maximized at (x1, x2) = (21, 0) and x̂ = 63.

2. Alternate solution
x1 x2 x3 x4 x5

3 2 0 0 0 x̂
1 2 1 0 0 24
1 1 0 1 0 21

−1 1 0 0 1 9

=⇒

x1 x2 x3 x4 x5

5 0 0 0 −2 x̂− 18

3 0 1 0 −2 6
2 0 0 1 −1 12
−1 1 0 0 1 9

=⇒ · · ·

x1 x2 x3 x4 x5

0 0 − 5
3 0 4

3 x̂− 28

1 0 1
3 0 − 2

3 2

0 0 − 2
3 1 1

3 8

0 1 1
3 0 1

3 11

=⇒

x1 x2 x3 x4 x5

0 0 1 −4 0 x̂− 60
1 0 −1 2 0 18
0 0 −2 3 1 24

0 1 1 −1 0 3

=⇒ · · ·

· · · =⇒

x1 x2 x3 x4 x5

0 −1 0 −3 0 x̂− 63
1 0 0 1 0 21
0 0 0 1 1 30
0 1 1 −1 0 3

so that x̂ = 3x1 + 2x2 is maximized at (x1, x2) = (21, 0) and x̂ = 63.
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6. First solution
x1 x2 x3 x4 x5

1 5 1 0 0 x̂

1 3 1 1 0 4
0 2 1 0 1 2

=⇒

x1 x2 x3 x4 x5

0 2 0 −1 0 x̂− 4
1 3 1 1 0 4

0 2 1 0 1 2

=⇒ · · ·

x1 x2 x3 x4 x5

0 0 −1 −1 −1 x̂− 6

1 0 − 1
2 1 − 3

2 1

0 1 1
2 0 1

2 1

so x1 = 1, x2 = 1, x3 = 0, and x̂ = 6

6. Alternate solution
x1 x2 x3 x4 x5

1 5 1 0 0 x̂
1 3 1 1 0 4

0 2 1 0 1 2

=⇒

x1 x2 x3 x4 x5

1 0 − 3
2 0 − 5

2 x̂− 5

1 0 − 1
2 1 − 3

2 1

0 1 1
2 0 1

2 1

=⇒ · · ·

x1 x2 x3 x4 x5

0 0 −1 −1 −1 x̂− 6

1 0 − 1
2 1 − 3

2 1

0 1 1
2 0 1

2 1

so x1 = 1, x2 = 1, x3 = 0, and x̂ = 6

9. Let s = servings of steak, c = servings of chicken, and f = servings of fish. Then we must
maximize the function x̂ = 15s + 10c + 20 f ,
subject to the constraints:

8s + 5c + 4 f ≤ 40
f ≤ 4

s + c ≤ 7

x1, x2, x3 ≥ 0.

Initial tableau is:
s c f x4 x5 x6

15 10 20 0 0 0 x̂
8 5 4 1 0 0 40
0 0 1 0 1 0 4
1 1 0 0 0 1 7
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4. Standard Form

So far we have considered problems of the form:

Maximize the function x̂ = a1x1 + · · ·+ anxn
subject to the constraints:

c11x1 + · · ·+ c1nxn ≤ b1
...

cm1x1 + · · ·+ cmnxn ≤ bm

where x1, · · · , xn ≥ 0.

In this type of problem we are maximizing the objective function x̂, using non-negative
variables xi ≥ 0 and constraints of the form

ci1x1 + · · ·+ cinxn ≤ bi,

where the linear function is bounded above by a constant bi.

Problems stated in this manner are said to be in standard form.

§

What if a linear programming problem is not given in this form? In most case some
easy adjustments can be made to re-state the problem in standard form, after which
the simplex method may be used to solve it.

Here are some tips for making such adjustments:

• If the problem asks you to minimize x̂, this can be accomplished by instead
maximizing the function −x̂ and taking the negative of the resulting answer.
For example, the problem, “Minimize x − y,” can be solved by maximizing
y− x and then negating the final result.

• Similarly, if a constraint equation is given with the inequality in the wrong
direction (≥), then multiplication of both sides by −1 will reverse it. For
example,

x + y ≥ 7

can be replaced with the equivalent

−x− y ≤ −7
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• If a constraint equation is given as an identity (=), it can be replaced with
two inequalities having this identity as intersection. For example,

x + y = 7

can be replaced with the equivalent pair

x + y ≤ 7

x + y ≥ 7
or, even better,

x + y ≤ 7

−x− y ≤ −7

• If a variable xi is bounded by a number less than zero, a substitution can be
made:

x1 ≥ −4
becomes

u1 ≥ 0 where u1 = x1 + 4

• If a variable xi is unbounded, a substitution with two new variables can be
made:

x1 = u1 − v1 where u1, v1 ≥ 0

§

Here are some examples of putting linear programs into standard form.

The linear program:

Minimize the function x̂ = x1 − 3x2 + x3
subject to the constraints:

2x1 + x2 + x3 ≤ 20
x1 + 3x2 − x3 ≥ 10

where x1, x2, x3 ≥ 0.

is put into standard form as follows:

Maximize the function ŷ = −x1 + 3x2 − x3
subject to the constraints:

2x1 + x2 + x3 ≤ 20
−x1 − 3x2 + x3 ≤ −10

where x1, x2, x3 ≥ 0.
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Here we turned a minimization problem into an equivalent maximization problem,
and we also negated a constraint inequality so that all constraints are bounded above
(≤). After solving this maximization problem a solution to the original occurs at the
same values of x1, x2, x3 by setting x̂ = −ŷ.

§

In another example, we can put the linear program:

Maximize the function x̂ = x1 + x2
subject to the constraints:

2x1 + x2 ≤ 14
x1 + 3x2 ≤ 10

where x1 ≥ 0.

into standard form as follows:

Maximize the function x̂ = x1 + u1 − u2
subject to the constraints:

2x1 + u1 − u2 ≤ 14
x1 + 3u1 − 3u2 ≤ 10

where x1, u1, u2 ≥ 0.

Here we made the substitution x2 = u1 − u2 so that the unbounded variable x2 is
now a difference of non-negative variables u1, u2.

§

Following the list of adjustments above we can turn any linear program into an
equivalent program in standard form. At this point we would like to be able to
use the simplex method to solve. Unfortunately, these adjustments can introduce a
problem. Consider the first example above:

Maximize the function ŷ = −x1 + 3x2 − x3
subject to the constraints:

2x1 + x2 + x3 ≤ 20
−x1 − 3x2 + x3 ≤ −10

where x1, x2, x3 ≥ 0.
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This problem might not have any solutions at all. Unlike the problems in Section 1

above, we cannot set all xi = 0 for an initial feasible guess, because 0 � −10. The
presence of negative values as upper bounds (such as −10 in the display above) could
make some linear programs infeasible, meaning that there are no values of xi that
satisfy the system. Geometrically this would imply that the polyhedron is actually
empty.

We will need to address two questions. First, if there are negative upper bounds,
how do we determine if a linear program has any solutions? Second, how can
we adjust the system to eliminate those negative upper bounds and then use the
simplex method to solve? These questions will be answered in the next section.

Exercises:

1. Put the following linear program into standard form:

Maximize the function x̂ = x1 + 6x2 + x3
subject to the constraints:

x1 + x3 ≥ −9
x1 − 3x2 + x3 ≤ 13

where x1, x2 ≥ 0 and x3 ≤ 0.

2. Put the following linear program into standard form:

Minimize the function x̂ = x1 + x2 + x3
subject to the constraints:

8x1 − x2 ≤ 20
−x1 + 3x2 + 4x3 ≤ 13

where x1, x2 ≥ 0 and x3 ≥ 4.

3. Put the following linear program into standard form:

Maximize the function x̂ = x1 + x2
subject to the constraints:

4x1 + 2x2 ≤ 21
2x1 + x2 ≤ 24

3x1 + 7x2 ≤ 20

where x1 ≥ 0.
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4. Put the following linear program into standard form:

Maximize the function x̂ = x1 + x2
subject to the constraints:

4x1 − 2x2 ≤ 21
2x1 + x2 ≤ 24

3x1 − 7x2 ≤ 20

where x1 ≥ 0 and x2 ≤ 0.

5. Put the following linear program into standard form:

Maximize the function x̂ = 3x1 − 2x2 + x3
subject to the constraints:

x1 − x2 + x3 ≤ 15
x1 − 2x2 + x3 ≤ 12

where 0 ≤ x1 ≤ 10, −10 ≤ x2 ≤ 0, and 0 ≤ x3 ≤ 10.

§
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Answers to Selected Exercises:

1. Set u3 = −x3, and multiply second contraint by −1:

Maximize the function x̂ = x1 + 6x2 − u3
subject to the constraints:

−x1 + u3 ≤ 9
x1 − 3x2 − u3 ≤ 13

where x1, x2, u3 ≥ 0.

2. Maximize the negative of the given objective, and also substitute u3 = x3 − 4 and simplify:

Maximize the function ŷ = −x1 − x2 − x3
subject to the constraints:

8x1 − x2 ≤ 20
−x1 + 3x2 + 4u3 ≤ −3

where x1, x2, u3 ≥ 0.

3. Since x2 is uncontrained, set x2 = u2 − v2, where u2, v2 ≥ 0:

Maximize the function x̂ = x1 + u2 − v2
subject to the constraints:

4x1 + 2u2 − 2v2 ≤ 21
2x1 + u2 − v2 ≤ 24

3x1 + 7u2 − 7v2 ≤ 20

where x1, u2, v2 ≥ 0.

4. Set u2 = −x2:

Maximize the function x̂ = x1 − u2
subject to the constraints:

4x1 + 2u2 ≤ 21
2x1 − u2 ≤ 24

3x1 + 7u2 ≤ 20

where x1, u2 ≥ 0.

5. Set u2 = −x2 and move the upper bounds into the table of constraints:

Maximize the function x̂ = 3x1 − 2x2 + x3
subject to the constraints:

x1 + u2 + x3 ≤ 15
x1 + 2u2 + x3 ≤ 12

x1 ≤ 10
u2 ≤ 10
x3 ≤ 10

where x1, u2, x3 ≥ 0.
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5. Feasible points

Suppose we want to solve the problem:

Maximize the function x̂ = x1 + x2
subject to the constraints:

x1 + x2 ≥ 1
−2x1 + x2 ≥ −6

x1 + 3x2 ≤ 10
−2x1 + x2 ≤ 1

where x1, x2 ≥ 0.

(1, 0) (3, 0)

(4, 2)

(1, 3)

(0, 1)

Figure 1. The feasible region described by (9).

In standard form, this becomes:

Maximize the function x̂ = x1 + x2
subject to the constraints:

−x1 − x2 ≤ −1
2x1 − x2 ≤ 6(9)
x1 + 3x2 ≤ 10
−2x1 + x2 ≤ 1

where x1, x2 ≥ 0.

Immediately there is a difficulty. The inequality −x1− x2 ≤ −1 is not satisfied when
x1 = x2 = 0, so it’s not clear for the moment whether any points (x1, x2) exist that
satisfy this problem. Before we can find an optimal (maximizing) point, we need to
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know if there are any points in this object at all. Perhaps the list (9) of inequalities
describes the empty set.

The space of points described by the constraint inequalities (9) is called the set of
feasible points. In the examples of Section 1 the origin (all xi = 0) was an obvious
feasible point, but in this example we need to determine if any feasible points exist
before we can maximize any objective function.

One way to address this concern is to sketch the region described by (9). In this
particular example the result would be the region in Figure 1. However, we have
seen that two-dimensional drawings are not always possible for common applica-
tions, so we need an algebraic approach. To address this we temporarily discard
the objective function x̂ = x1 + x2 and replace it with a new one: x̂ = −z. We also
adjust the constraints to write an auxiliary problem:

Maximize the function x̂ = −z
subject to the constraints:

−x1 − x2 − z ≤ −1
2x1 − x2 − z ≤ 6(10)
x1 + 3x2 − z ≤ 10
−2x1 + x2 − z ≤ 1

where x1, x2, z ≥ 0.

Notice that this new problem is feasible, since (x1, x2, z) = (0, 0, 1) is obviously a
feasible point of (10). If we can maximize x̂ = −z at the value z = 0, then we have
found a point (x1, x2, 0) that lies in the feasible region of the original problem. If
the maximum of x̂ is strictly negative, then the original problem was infeasible and
unsolvable, since the constraints describe an empty set of points.

The strategy for solving (10) involves two parts: first, a positivity adjustment, after
which we can follow the procedures from earlier. In the initial tableau:

x1 x2 z x3 x4 x5 x6

0 0 −1 0 0 0 0 x̂
−1 −1 −1 1 0 0 0 −1

2 −1 −1 0 1 0 0 6
1 3 −1 0 0 1 0 10
−2 1 −1 0 0 0 0 1



19

To begin, pivot in the column of the auxiliary objective z, placing the pivot in the
same row as the lowest negative value appearing in the last column:

x1 x2 z x3 x4 x5 x6

0 0 −1 0 0 0 0 x̂

−1 −1 −1 1 0 0 0 −1
2 −1 −1 0 1 0 0 6
1 3 −1 0 0 1 0 10
−2 1 −1 0 0 0 1 1

After this step the entire last column will be positive, and we can continue pivoting
as usual:

x1 x2 z x3 x4 x5 x6

1 1 0 −1 0 0 0 x̂ + 1
1 1 1 −1 0 0 0 1
3 0 0 −1 1 0 0 7
2 4 0 −1 0 1 0 11
−1 2 0 −1 0 0 1 2

to obtain
x1 x2 z x3 x4 x5 x6

0 0 −1 0 0 0 0 x̂
1 1 1 −1 0 0 0 1
0 −3 −3 2 1 0 0 4
0 2 −2 1 0 1 0 9
0 3 1 −2 0 0 1 3

This completes the auxiliary problem. Since x̂ is maximized at 0, we have found a
feasible point for the original system at (x1, x2) = (1, 0).

To solve the original maximization problem, remove the z-column and replace the
objective function with the original x̂ = x1 + x2:

x1 x2 x3 x4 x5 x6

1 1 0 0 0 0 x̂
1 1 −1 0 0 0 1
0 −3 2 1 0 0 4
0 2 1 0 1 0 9
0 3 −2 0 0 1 3

(11)

and solve for maximal x̂ as before.
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Exercises:

1. Maximize x1 + 2x2 + 3x3 subject to the constraints:

x1 + x2 + x3 ≥ 10
x1 + x2 + x3 ≤ 10

x1 − x2 ≤ 2
x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0.

2. Finish solving the maximization problem from the example in this section, con-
tinuing with the tableau (11).


