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Orthogonal Projections

Let X1, . . . , Xk be a family of linearly independent (column) vectors in Rn, and let

W = Span(X1, . . . , Xk).

In other words, the vectors X1, . . . , Xk form a basis for the k-dimensional subspace W
of Rn.

Suppose we are given another vector Y ∈ Rn. How can we project Y onto W
orthogonally? In other words, can we find a vector Ŷ ∈W so that Y− Ŷ is orthogonal
(perpendicular) to all of W? See Figure 1.

To begin, translate this question into the language of matrices and dot products.
We need to find a vector Ŷ ∈W such that

(1) (Y− Ŷ) ⊥ Z, for all vectors Z ∈W.

Actually, it’s enough to know that Y − Ŷ is perpendicular to the vectors X1, . . . , Xk
that span W. This would imply that (1) holds. (Why?)

Expressing this using dot products, we need to find Ŷ ∈W so that

(2) XT
i (Y− Ŷ) = 0, for all i = 1, 2, . . . , k.

This condition involves taking k dot products, one for each Xi. We can do them all at
once by setting up a matrix A using the Xi as the columns of A, that is, let

A =

 X1 X2 · · · Xk

 .

Note that each vector Xi ∈ Rn has n coordinates, so that A is an n× k matrix. The set
of conditions listed in (2) can now be re-written:

AT(Y− Ŷ) = 0,

which is equivalent to

(3) ATY = ATŶ.

Meanwhile, we need the projected vector Ŷ to be a vector in W, since we are pro-
jecting onto W. This means that Ŷ lies in the span of the vectors X1, . . . , Xk. In other
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Figure 1. Projection of a vector onto a subspace.

words,

Ŷ = c1X1 + c2X2 + · · ·+ ckXk = A


c1
c2
...

ck

 = AC.

where C is a k-dimensional column vector. On combining this with the matrix equa-
tion (3) we have

ATY = AT AC.
If we knew what C was then we would also know Ŷ, since we were given the columns
Xi of A, and Ŷ = AC. To solve for C just invert the k× k matrix AT A to get

(4) (AT A)−1ATY = C.

How do we know that (AT A)−1 exists? Let’s assume it does for now, and then address
this question later on.

Now finally we can find our projected vector Ŷ. Since Ŷ = AC, multiply both sides
of (4) to obtain

A(AT A)−1ATY = AC = Ŷ.
The matrix

Q = A(AT A)−1AT

is called the projection matrix for the subspace W. According to our derivation above, the
projection matrix Q maps a vector Y ∈ Rn to its orthogonal projection (i.e. its shadow)
QY = Ŷ in the subspace W.

It is easy to check that Q has the following nice properties:

(1) QT = Q.
(2) Q2 = Q.

One can show that any matrix satisfying these two properties is in fact a projection
matrix for its own column space. You can prove this using the hints given in the
exercises.
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There remains one problem. At a crucial step in the derivation above we took the
inverse of the k × k matrix AT A. But how do we know this matrix is invertible? It
is invertible, because the columns of A, the vectors X1, . . . , Xk, were assumed to be
linearly independent. But this claim of invertibility needs a proof.

Lemma 1. Suppose A is an n × k matrix, where k ≤ n, such that the columns of A are
linearly independent. Then the k× k matrix AT A is invertible.

Proof of Lemma 1: Suppose that AT A is not invertible. In this case, there exists a vector
X 6= 0 such that AT AX = 0. It then follows that

(AX) · (AX) = (AX)T AX = XT AT AX = XT0 = 0,

so that the length ‖AX‖ =
√
(AX) · (AX) = 0. In other words, the length of AX is

zero, so that AX = 0. Since X 6= 0, this implies that the columns of A are linearly
dependent. Therefore, if the columns of A are linearly independent, then AT A must
be invertible. �

Example: Compute the projection matrix Q for the 2-dimensional subspace W of R4

spanned by the vectors (1, 1, 0, 2) and (−1, 0, 0, 1). What is the orthogonal projection
of the vector (0, 2, 5,−1) onto W?

Solution: Let

A =


1 −1
1 0
0 0
2 1

 .

Then

AT A =

[
6 1
1 2

]
and (AT A)−1 =

[ 2
11

−1
11−1

11
6

11

]
,

so that the projection matrix Q is given by

Q = A(AT A)−1AT =


1 −1
1 0
0 0
2 1

 [ 2
11

−1
11−1

11
6

11

] [
1 1 0 2
−1 0 0 1

]
=


10
11

3
11 0 −1

11
3

11
2

11 0 3
11

0 0 0 0
−1
11

3
11 0 10

11


We can now compute the orthogonal projection of the vector (0, 2, 5,−1) onto W. This
is 

10
11

3
11 0 −1

11
3

11
2

11 0 3
11

0 0 0 0
−1
11

3
11 0 10

11




0
2
5
−1

 =


7

11
1

11
0
−4
11





4

o

v

Refl(v)

X1

X2

v̂

u

W

Figure 2. Reflection of the vector v across the plane W.

Reflections

We have seen earlier in the course that reflections of space across (i.e. through)
a plane is linear transformation. Like rotations, a reflection preserves lengths and
angles, although, unlike rotations, a reflection reverses orientation (“handedness").

Once we have projection matrices it is easy to compute the matrix of a reflection.
Let W denote a plane passing through the origin, and suppose we want to reflect a
vector v across this plane, as in Figure 2.

Let u denote a unit vector along W⊥, that is, let u be a normal to the plane W. We
will think of u and v as column vectors. The projection of v along the line through u
is then given by:

v̂ = Proju(v) = u(uTu)−1uTv.

But since we chose u to be a unit vector, uTu = u · u = 1, so that

v̂ = Proju(v) = uuTv.

Let Qu denote the matrix uuT, so that v̂ = Quv.

What is the reflection of v across W? It is the vector ReflW(v) that lies on the other
side of W from v, exactly the same distance from W as is v, and having the same
projection into W as v. See Figure 2. The distance between v and its reflection is
exactly twice the distance of v to W, and the difference between v and its reflection
is perpendicular to W. That is, the difference between v and its reflection is exactly
twice the projection of v along the unit normal u to W. This observation yields the
equation:

v− ReflW(v) = 2Quv,

so that
ReflW(v) = v− 2Quv = Iv− 2Quv = (I − 2uuT)v.

The matrix HW = I − 2uuT is called the reflection matrix for the plane W, and is also
sometimes called a Householder matrix.
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Example: Compute the reflection of the vector v = (−1, 3,−4) across the plane
2x− y + 7z = 0.

Solution: The vector w = (2,−1, 7) is normal to the plane, and wTw = 22 +(−1)2 +
72 = 54, so a unit normal will be

u =
w
|w| =

1√
54

(2,−1, 7).

The reflection matrix is then given by

H = I − 2uuT = I − 2
54

wwT = I − 1
27

 2
−1

7

 [ 2 −1 7
]
= · · ·

· · · =

 1 0 0
0 1 0
0 0 1

− 1
27

 4 −2 14
−2 1 −7
14 −7 49

 ,

so that

H =

 23/27 2/27 −14/27
2/27 26/27 7/27

−14/27 7/27 −22/27


The reflection of v across W is then given by

Hv =

 23/27 2/27 −14/27
2/27 26/27 7/27

−14/27 7/27 −22/27

 −1
3
−4

 =

 39/27
48/27

123/27



Reflections and Projections

Notice in Figure 2 that the projection of v into W is the midpoint of the vector v and
its reflection Hv = ReflW(v); that is,

Qv =
1
2
(v + Hv) or, equivalently Hv = 2Qv− v,

where Q = QW denotes the projection onto W. (This is not the same as Qu in the
previous section, which was projection onto the normal of W.)

Let I denote the identity matrix, so that v = Iv for all vectors v ∈ Rn. The identities
above can now be expressed as matrix identities:

Q =
1
2
(I + H) and H = 2Q− I,

So once you have computed the either the projection or reflection matrix for a sub-
space of Rn, the other is quite easy to obtain.
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Exercises

1. Suppose that M is an n× n matrix such that MT = M = M2. Let W denote the
column space of M.

(a) Suppose that Y ∈W. (This means that Y = MX for some X.) Prove that MY = Y.
(b) Suppose that v is a vector in Rn. Why is Mv ∈W?
(c) If Y ∈W, why is v−Mv ⊥ Y?
(d) Conclude that Mv is the projection of v into W.

2. Compute the projection of the vector v = (1, 1, 0) onto the plane x + y− z = 0.

3. Compute the projection matrix Q for the subspace W of R4 spanned by the vectors
(1, 2, 0, 0) and (1, 0, 1, 1).

4. Compute the orthogonal projection of the vector z = (1,−2, 2, 2) onto the subspace
W of Problem 3. above. What does your answer tell you about the relationship
between the vector z and the subspace W?

5. Recall that a square matrix P is said to be an orthogonal matrix if PTP = I. Show that
Householder matrices are always orthogonal matrices; that is, show that HT H = I.

6. Compute the Householder matrix for reflection across the plane x + y− z = 0.

7. Compute the reflection of the vector v = (1, 1, 0) across the plane x + y− z = 0.
What happens when you add v to its reflection? How does this sum compare to your
answer from Exercise 2? Draw a sketch to explain this phenomenon.

8. Compute the reflection of the vector v = (1, 1) across the line ` in R2 spanned by
the vector (2, 3). Sketch the vector v, the line ` and the reflection of v across `. (Do
not confuse the spanning vector for ` with the normal vector to `.)

9. Compute the Householder matrix H for reflection across the hyperplane
x1 + 2x2 − x3 − 3x4 = 0 in R4. Then compute the projection matrix Q for this hyper-
plane.

10. Compute the Householder matrix for reflection across the plane z = 0 in R3.
Sketch the reflection involved. Your answer should not be too surprising!
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Selected Solutions to Exercises:

2. We describe two ways to solve this problem.

Solution 1: Pick a basis for the plane. Since the plane is 2-dimensional, any two
independent vectors in the plane will do, say, (1,−1, 0) and (0, 1, 1). Set

A =

 1 0
−1 1

0 1

 and AT A =

[
2 −1
−1 2

]

The projection matrix Q for the plane is

Q = A(AT A)−1AT =

 1 0
−1 1

0 1

 [ 2/3 1/3
1/3 2/3

] [
1 −1 0
0 1 1

]
=

 2/3 −1/3 1/3
−1/3 2/3 1/3

1/3 1/3 2/3


We can now project any vector onto the plane by multiplying by Q:

Projection(v) = Qv =

 2/3 −1/3 1/3
−1/3 2/3 1/3

1/3 1/3 2/3

 1
1
0

 =

 1/3
1/3
2/3


Solution 2: First, project v onto the normal vector n = (1, 1,−1) to the plane:

y = Projn(v) =
v · n
n · nn = (2/3, 2/3,−2/3).

Since y is the component of v orthogonal to the plane, the vector v − y is the or-
thogonal projection of v onto the plane. The solution (given in row vector notation)
is

v− y = (1, 1, 0)− (2/3, 2/3,−2/3) = (1/3, 1/3, 2/3),

as in the previous solution.

Note: Which method is better? The second way is shorter for hyperplanes (sub-
spaces of Rn having dimension n− 1), but finding the projection matrix Q is needed
if you are projecting from Rn to some intermediate dimension k, where you no longer
have a single normal vector to work with. For example, a 2-subspace in R4 has a
2-dimensional orthogonal complement as well, so one must compute a projection ma-
trix in order to project to either component of R4, as in the next problem.

3. Set

A =


1 1
2 0
0 1
0 1

 so that AT A =

[
5 1
1 3

]
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The projection matrix Q for the plane is

Q = A(AT A)−1AT =


1 1
2 0
0 1
0 1


[

3
14 −

1
14

− 1
14

5
14

] [
1 2 0 0
1 0 1 1

]
=


6

14
4

14
4

14
4
14

4
14

12
14 −

2
14 −

2
14

4
14 −

2
14

5
14

5
14

4
14 −

2
14

5
14

5
14


5. Here is a hint: Use the fact that H = I − 2uuT, where I is the identity matrix and u
is a unit column vector. What is HT =? What is HT H =?

6. The vector v = (1, 1,−1) is normal to the plane x + y − z = 0, so the vector
u = 1√

3
(1, 1,−1) = 1√

3
v is a unit normal. Expressing u and v as column vectors we

find that

I − 2uuT = I − (2/3)vvT = I − 2
3

 1
1
−1

 [ 1 1 −1
]

=

 1 0 0
0 1 0
0 0 1

− 2
3

 1 1 −1
1 1 −1
−1 −1 1

 =


1
3 −

2
3

2
3

−2
3

1
3

2
3

2
3

2
3

1
3




