Orthogonal Projections and Reflections (with exercises)
by Dan Klain

October 16, 2018
Corrections and comments are welcome.

Orthogonal Projections

Let X, ..., Xk be a family of linearly independent (column) vectors in R", and let
W = Span(Xy,..., Xi).

In other words, the vectors Xj, ..., Xj form a basis for the k-dimensional subspace W
of R™.

Suppose we are given another vector Y € R". How can we project Y onto W
orthogonally? In other words, can we find a vector Y € W so that Y — Y is orthogonal
(perpendicular) to all of W? See Figure 1.

To begin, translate this question into the language of matrices and dot products.
We need to find a vector Y € W such that

(1) (Y —Y) L Z, for all vectors Z € W.

Actually, it’s enough to know that Y — Y is perpendicular to the vectors X, ..., Xi
that span W. This would imply that (1) holds. (Why?)

Expressing this using dot products, we need to find Y € W so that
(2) X'y —-Y)=0, foralli=1,2,...,k

This condition involves taking k dot products, one for each X;. We can do them all at
once by setting up a matrix A using the X; as the columns of A, that is, let

X

Note that each vector X; € R" has n coordinates, so that A is an n x k matrix. The set
of conditions listed in (2) can now be re-written:

AT(Y —Y) =0,
which is equivalent to
(3) ATy = ATy,

Meanwhile, we need the projected vector Y to be a vector in W, since we are pro-

jecting onto W. This means that Y lies in the span of the vectors Xj, ..., X. In other
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FIGURE 1. Projection of a vector onto a subspace.

words,
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where C is a k-dimensional column vector. On combining this with the matrix equa-
tion (3) we have

ATy = ATAC.
If we knew what C was then we would also know Y, since we were given the columns
X; of A,and Y = AC. To solve for C just invert the k x k matrix AT A to get

(1) (ATA)1ATY = C.

How do we know that (AT A)~! exists? Let’s assume it does for now, and then address
this question later on.

Now finally we can find our projected vector Y. Since Y = AC, multiply both sides

of (4) to obtain
A(ATA)1ATY = AC =Y.
The matrix
Q=A(ATA) AT

is called the projection matrix for the subspace W. According to our derivation above, the
projection matrix Q maps a vector Y € R" to its orthogonal projection (i.e. its shadow)
QY = Y in the subspace W.

It is easy to check that Q has the following nice properties:

(1 Q=0
(2) *=0Q.

One can show that any matrix satisfying these two properties is in fact a projection
matrix for its own column space. You can prove this using the hints given in the
exercises.
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There remains one problem. At a crucial step in the derivation above we took the
inverse of the k x k matrix AT A. But how do we know this matrix is invertible? It
is invertible, because the columns of A, the vectors Xy, ..., X, were assumed to be
linearly independent. But this claim of invertibility needs a proof.

Lemma 1. Suppose A is an n x k matrix, where k < n, such that the columns of A are
linearly independent. Then the k x k matrix AT A is invertible.

Proof of Lemma 1: Suppose that AT A is not invertible. In this case, there exists a vector
X # 0 such that ATAX = 0. It then follows that

(AX) - (AX) = (AX)TAX = XTATAX = XT0 =0,

so that the length ||AX| = /(AX) - (AX) = 0. In other words, the length of AX is
zero, so that AX = 0. Since X # 0, this implies that the columns of A are linearly
dependent. Therefore, if the columns of A are linearly independent, then AT A must
be invertible. ]

Example: Compute the projection matrix Q for the 2-dimensional subspace W of r*
spanned by the vectors (1,1,0,2) and (—1,0,0,1). What is the orthogonal projection
of the vector (0,2,5, —1) onto W?

Solution: Let

1 -1
1 0
A=10 o0
2 1
Then
6 1 2 -1
Ata= |9 5] aa @ =[ 1 7,
11 11
so that the projection matrix Q is given by
1 —1 -3 o0 =
Q—A(ATA)*lAT—lo ﬁ;—} 1102_%%01—1
N |10 0 o = -100 1] 0 00 O
-1 3 10
2 1 o0 on

We can now compute the orthogonal projection of the vector (0,2,5, —1) onto W. This
is
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FIGURE 2. Reflection of the vector v across the plane W.

Reflections

We have seen earlier in the course that reflections of space across (i.e. through)
a plane is linear transformation. Like rotations, a reflection preserves lengths and
angles, although, unlike rotations, a reflection reverses orientation (“handedness").

Once we have projection matrices it is easy to compute the matrix of a reflection.
Let W denote a plane passing through the origin, and suppose we want to reflect a
vector v across this plane, as in Figure 2.

Let u denote a unit vector along W+, that is, let u be a normal to the plane W. We
will think of u and v as column vectors. The projection of v along the line through u
is then given by:

6 = Proj,(v) = u(u'u) u'v.

Tyw=wu-u=1,so that

o = Proj,(v) = uu'v.

But since we chose u to be a unit vector, u

Let Q, denote the matrix uu’, so that ¥ = Q,v.

What is the reflection of v across W? It is the vector Refly (v) that lies on the other
side of W from v, exactly the same distance from W as is v, and having the same
projection into W as v. See Figure 2. The distance between v and its reflection is
exactly twice the distance of v to W, and the difference between v and its reflection
is perpendicular to W. That is, the difference between v and its reflection is exactly
twice the projection of v along the unit normal u to W. This observation yields the
equation:

v — Reflyy (v) = 2Qyv,
so that
Reflyy (v) = v — 2Q,v = Iv — 2Q,v = (I — 2uu’)v.

The matrix Hy = I — 2uu” is called the reflection matrix for the plane W, and is also
sometimes called a Householder matrix.
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Example: Compute the reflection of the vector v = (—1,3, —4) across the plane
2x —y+7z=0.

Solution: The vector w = (2, —1,7) is normal to the plane, and w'w = 22+ (—1)% +
72 = 54, so a unit normal will be
w

1
U= =—=(2,-1,7
ol = Va7
The reflection matrix is then given by
H=1-2u’ =1 2wwl =1 = —% (2 -1 7]=
B o 27 B
100 1 4 -2 14
=010 —-=|-2 1 =7/,
00 1] 2| 14 -7 49

so that
23/27 2/27 -—-14/27
H = 2/27 26/27 7/27
—14/27 7/27 -—-22/27

The reflection of v across W is then given by

23/27 2/27 —14/27 -1 39/27
Ho = 2/27 26/27 7/27 3| = 48/27
—14/27 7/27 —-22/27 —4 123/27

Reflections and Projections

Notice in Figure 2 that the projection of v into W is the midpoint of the vector v and
its reflection Huv = Refly (v); that is,

1
Qu = E(v + Hv) or, equivalently Hv =2Qv—7v,

where Q = Qp denotes the projection onto W. (This is not the same as Q, in the
previous section, which was projection onto the normal of W.)

Let I denote the identity matrix, so that v = Iv for all vectors v € R". The identities
above can now be expressed as matrix identities:

Q:%(I—i—H) and H=2Q-1,

So once you have computed the either the projection or reflection matrix for a sub-
space of R", the other is quite easy to obtain.



Exercises

1. Suppose that M is an n x n matrix such that MT = M = M?. Let W denote the
column space of M.

(a) Suppose that Y € W. (This means that Y = MX for some X.) Prove that MY =Y.
(b) Suppose that v is a vector in R"”. Why is Mv € W?

@IfYe W, whyisv— Mo L Y?

(d) Conclude that Mv is the projection of v into W.

2. Compute the projection of the vector v = (1,1,0) onto the plane x +y —z = 0.

3. Compute the projection matrix Q for the subspace W of R* spanned by the vectors
(1,2,0,0) and (1,0,1,1).

4. Compute the orthogonal projection of the vector z = (1, —2,2,2) onto the subspace
W of Problem 3. above. What does your answer tell you about the relationship
between the vector z and the subspace W?

5. Recall that a square matrix P is said to be an orthogonal matrix if PTP = I. Show that
Householder matrices are always orthogonal matrices; that is, show that H'H = 1.

6. Compute the Householder matrix for reflection across the plane x +y —z = 0.

7. Compute the reflection of the vector v = (1,1,0) across the plane x +y —z = 0.
What happens when you add v to its reflection? How does this sum compare to your
answer from Exercise 2? Draw a sketch to explain this phenomenon.

8. Compute the reflection of the vector v = (1,1) across the line ¢ in R? spanned by
the vector (2,3). Sketch the vector v, the line ¢ and the reflection of v across ¢. (Do
not confuse the spanning vector for ¢ with the normal vector to £.)

9. Compute the Householder matrix H for reflection across the hyperplane
X1+ 2x7 — x3 — 3x4 = 0 in R%. Then compute the projection matrix Q for this hyper-
plane.

10. Compute the Householder matrix for reflection across the plane z = 0 in R.
Sketch the reflection involved. Your answer should not be too surprising!



Selected Solutions to Exercises:
2. We describe two ways to solve this problem.

Solution 1: Pick a basis for the plane. Since the plane is 2-dimensional, any two
independent vectors in the plane will do, say, (1, —1,0) and (0,1,1). Set

0
1] and ATA:{ 2 _1}
1

A= -1 2

O =

The projection matrix Q for the plane is

i [2/3 1/3] [1 1 0} _
01 1/3 2/3 0 11

We can now project any vector onto the plane by multiplying by Q:

2/3 —1/3 1/3 1 1/3
Projection(v) = Qu= | —-1/3 2/3 1/3 1| =1|1/3
1/3  1/3 2/3 0 2/3

Q=A(ATA)1AT = -1/3  2/3 1/3

1/3 1/3 2/3

{ 2/3 —1/3 1/3]

Solution 2: First, project v onto the normal vector n = (1,1,—1) to the plane:

y = Proju(v) = %n = (2/3,2/3,-2/3).

Since y is the component of v orthogonal to the plane, the vector v — y is the or-
thogonal projection of v onto the plane. The solution (given in row vector notation)
is

v—y=(1,1,0)—(2/3,2/3,-2/3) = (1/3,1/3,2/3),
as in the previous solution.

Note: Which method is better? The second way is shorter for hyperplanes (sub-
spaces of R" having dimension n — 1), but finding the projection matrix Q is needed
if you are projecting from R" to some intermediate dimension k, where you no longer
have a single normal vector to work with. For example, a 2-subspace in R* has a
2-dimensional orthogonal complement as well, so one must compute a projection ma-
trix in order to project to either component of k%, as in the next problem.

3. Set

3

—_ = O =

sothat ATA = l? 1}

OO N



8

The projection matrix Q for the plane is

6 4 4
LT, Eopd

_ Tav—1,T |2 0 1 ~1 1200 _ |12 1@ 113 —
Q_A(AA) A= 01 [_L 11{1011 Tl _2 5
14 14 14 14 14
01 4 2 5
14 14 14

o mon B 2l

5. Here is a hint: Use the fact that H = [ — 2uu’, where I is the identity matrix and u
is a unit column vector. What is HT =? Whatis H'H =?

6. The vector v = (1,1,—1) is normal to the plane x +y —z = 0, so the vector
1 1 . . .

u = %(1, 1,-1) = T30 is @ unit normal. Expressing u and v as column vectors we

tind that

1
2
1—2uuT=1—(2/3)m;T=1—5 1[[11 —1]
~1
100] ,[ 1 1-1 333
=|l010|-2| 1 1 -1]|=|-%2 12
3 3 33
0 01 -1 -1 1 2 2 1
3 3 3



