
Lectures notes on rotations (with exercises)
92.222 - Linear Algebra II - Spring 2005

by D. Klain

1. How to compute the orthogonal matrix that represents a rotation of R3

Recall that the 2× 2 matrix

Aθ =

[
cos θ − sin θ
sin θ cos θ

]
rotates the plane R2 counter-clockwise by the angle θ around the origin. Is there a similar
way to represent rotations of 3-dimensional space using 3× 3 matrices?

Consider the simple case of rotating 3-dimensional space by the same angle θ counter-
clockwise around the z-axis. This is analogous to rotating the earth by the angle θ around
the north pole, for example. This rotation fixes the z-axis, and acts on the xy-plane in
the exactly the same way as the 2× 2 matrix Aθ above. Therefore, the matrix of rotation
around the z-axis by the counter-clockwise angle θ is given by

Sθ =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ,
where we assign the column vector (1, 0, 0)T to the x-axis, (0, 1, 0)T to the y-axis, and
(0, 0, 1)T to the z-axis.

Note that, like Aθ, the matrix Sθ is an orthogonal matrix, that is,

SθS
T
θ = I or, equivalently, STθ = S−1

θ .

More generally, suppose we rotate 3-dimensional space counter-clockwise by the angle θ
around a different axis through the origin, pointing along the direction of some unit vector
u ∈ R3. For this we need the analogue of the matrix Sθ, for which the z-axis is replaced by
a different axis of rotation, the line passing through the point u and the origin o. Let us
call this new rotation matrix Rθ,u, depending as it does on both the choice of axis u and
the angle of rotation θ.

To compute Rθ,u, choose a unit vector v that is orthogonal to u; that is, so that u · v = 0.
Let w = u × v, where × denotes the vector cross product in R3. We now have a new
orthonormal basis for R3, {v,w,u} such that v × w = u. (It might help the reader to
sketch this basis, where u is the vector pointing upwards in your picture, in analogy to the
z-axis.)

Let P denote the matrix having v,w,u as its three columns (in that exact order):

P =

 v w u

 , (1)
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Note that P is an orthogonal matrix, P TP = I, since the columns of P were (deliberately)
chosen to form an orthonormal set. Note in particular that

P Tu =

 vT

wT

uT

u =

 vTu
wTu
uTu

 =

 0
0
1

 , (2)

and that, similarly,

P Tv =

 1
0
0

 and P Tw =

 0
1
0

 .

Theorem 1 The matrix Rθ,u that rotates R3 around the vector u by the counterclockwise
angle θ is given by the formula

Rθ,u = PSθP
T (3)

Proof of Theorem 1: To begin, consider what the transformation PSθP
T does to the

vectors v,w,u. The matrix PSθP
T fixes u; indeed, by (1) and (2),

PSθP
Tu = PSθ

 0
0
1

 = P

 0
0
1

 = u.

Similarly,

PSθP
Tv = PSθ

 1
0
0

 = P

 cos θ
sin θ

0

 = cos θ v + sin θw,

while

PSθP
Tw = PSθ

 0
1
0

 = P

 − sin θ
cos θ

0

 = − sin θ v + cos θw.

More generally, if X = av + bw + cu is any vector in R3 (expressed in terms of the
orthonormal basis {v,w,u}) then

PSθP
TX = aPSθP

Tv + bPSθP
Tw + cPSθP

Tu
= a(cos θ v + sin θw) + b(− sin θ v + cos θw) + cu = Rθ,uX,

rotating X counterclockwise by θ in the vw-plane orthogonal to the axis of rotation u.

The identity (3), together with the orthogonality of P and Sθ, implies that Rθ,u is also an
orthogonal matrix. More precisely, we have the following corollary.

Corollary 2 A rotation matrix R is an orthogonal matrix with determinant 1.
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Proof: If R is a rotation matrix then R = PSθP
T , where P T = P−1 and STθ = S−1

θ , as in
Theorem 1. Therefore,

RTR = (PSθP
T )TPSθP

T = PSTθ P
TPSθP

T = PSTθ SθP
T = PP T = I,

so that R is an orthogonal matrix. Moreover,

det(R) = det(PSθP
T ) = det(PSθP

−1) = det(P ) det(Sθ)
1

det(P )
= det(Sθ) = 1.

Remark: The converse of the Corollary is also true: A matrix R is a rotation matrix if
and only if R is an orthogonal matrix and det(R) = 1. But we will not prove this now.

Example: Find the matrix Rπ
3
,u that rotates R3 by the counterclockwise angle π/3 around

the axis through the vector u = (2, 1, 1).

Solution: To begin, find a vector v that is perpendicular to u = (2, 1, 1). An easy choice is
v = (0, 1,−1). We then set w = u× v, so that

w = det

 i j k
2 1 1
0 1 −1

 = (−2, 2, 2).

We now have an orthogonal set {v,w,u}, where v×w = u and u is parallel to our desired
axis of rotation. Unfortunately, however, the vectors v,w,u are not unit vectors. This is
easily fixed: dividing each vector by its length, re-assign the variables v,w,u to form the
orthonormal set:

v = (0,
1√
2
,− 1√

2
) w = (− 1√

3
,

1√
3
,

1√
3

) u = (
2√
6
,

1√
6
,

1√
6

),

so that

P =

 v w u

 =


0 − 1√

3
2√
6

1√
2

1√
3

1√
6

− 1√
2

1√
3

1√
6


It now follows from Theorem 1 that

Rπ
3
,u = PSπ

3
P T =


0 − 1√

3
2√
6

1√
2

1√
3

1√
6

− 1√
2

1√
3

1√
6




1
2
−
√

3
2

0
√

3
2

1
2

0

0 0 1




0 1√
2
− 1√

2

− 1√
3

1√
3

1√
3

2√
6

1√
6

1√
6

 .
After multiplying these matrices, we obtain

Rπ
3
,u =


5
6

1
6
− 1

2
√

2
1
6

+ 1
2
√

2
1
6

+ 1
2
√

2
7
12

1
12
− 1√

2
1
6
− 1

2
√

2
1
12

+ 1√
2

7
12

 . (4)
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2. How to compute the rotation of R3 represented by a given orthogonal matrix

Now suppose you are given an orthogonal matrix R such that detR = 1; in other words, a
rotation matrix. What is the axis of rotation for R? What is the angle of rotation? How
do we compute u and θ so that R = Rθ,u?

Here is one quick test to find θ. Recall that the trace of a square n × n matrix A is the
sum of its diagonal entries: trace(A) = A11 + A22 + · · ·+ Ann.

Theorem 3 (The Cosine Test) If R is a rotation matrix having angle of rotation θ,
then

cos θ =
trace(R)− 1

2
. (5)

Proof: We will need the fact that if A is any square n × n matrix, and P is an n × n
invertible matrix, then trace(PAP−1) = trace(A). This is a consequence of the fact that,
for any two n×n matrices A and B, we have trace(AB) = trace(BA). (You can check this
directly by using the matrix multiplication formula.)

If R is a rotation matrix having angle of rotation θ, then R = Rθ,u for some unit vector u,
so that R = PSθP

T = PSθP
−1, as in (3). Hence,

trace(R) = trace(PSθP
−1) = trace(Sθ) = 1 + 2 cos θ,

from which the formula (5) above immediately follows.

The Cosine Test, while very easy to use, doesn’t tell the whole story, since the axis of
rotation u remains unknown. Moreover, there remains an ambiguity regarding the value of
θ, since we only know cos θ. Since cos θ = cos(−θ), the sign of the angle remains obscure.

Fortunately it takes only a tiny bit of work to compute u. The key is to remember that
if u lies in the axis of rotation, then the rotation R fixes the vector u. In other words,
Ru = u. Since the inverse matrix R−1 will represent rotation around the same axis u by
the negative of the angle θ, we also have R−1u = u. Recall that R is an orthogonal matrix,
so that RT = R−1. It now follows that RTu = R−1u = u, so that

(R−RT )u = Ru−RTu = u− u = 0.

This suggests that we can discover the vector u by considering the null space of the matrix
R−RT .

Denote

R =

 r11 r12 r13

r21 r22 r23

r31 r32 r33


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We then have

R−RT =

 0 r12 − r21 r13 − r31

r21 − r12 0 r23 − r32

r31 − r13 r32 − r23 0

 =

 0 α β
−α 0 γ
−β −γ 0

 ,
where we denote α = r12 − r21, β = r13 − r31, and γ = r23 − r32. This suggests that u is
parallel to the vector

q =

 −γβ
−α

 =

 r32 − r23

r13 − r31

r21 − r12

 , (6)

assuming this vector is not the zero vector (which might happen sometimes).

We summarize this result, and make it more precise, with the following theorem.

Theorem 4 (The Symmetric Difference Test) Suppose that R is a rotation matrix,
and suppose that RT 6= R, so that the vector q 6= 0. Then the axis of rotation of R is
parallel to q. More specifically, the matrix R rotates R3 by a positive counterclockwise
angle θ around the unit vector u, where

q = 2(sin θ) u.

Note, in particular, that 2 sin θ = |q| and u = q
|q| . Using both Theorem 3 and Theorem 4

we obtain the axis of rotation, with direction and orientation provided by u, and the exact
value of the angle θ, from the values of cos θ and sin θ.

Proof: Suppose that R = Rθ,u = PSθP
T as in (3). Then 0 α β

−α 0 γ
−β −γ 0

 = R−RT = PSθP
T−PSTθ P T = P (Sθ−STθ )P T = P

 0 −2 sin θ 0
2 sin θ 0 0

0 0 0

P T

=

 v w u


 0 −2 sin θ 0

2 sin θ 0 0
0 0 0


 vT

wT

uT

 = 2(sin θ)(wvT − vwT ),

so that

α = 2 sin θ(v2w1 − v1w2), β = 2 sin θ(v3w1 − v1w3), γ = 2 sin θ(v3w2 − v2w3).

In other words,

q =

 −γβ
−α

 = 2(sin θ) v ×w = 2(sin θ) u.
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Example: Let’s use Theorem 4 to check the work we did in the last example, where

R =


5
6

1
6
− 1

2
√

2
1
6

+ 1
2
√

2
1
6

+ 1
2
√

2
7
12

1
12
− 1√

2
1
6
− 1

2
√

2
1
12

+ 1√
2

7
12

 .

In this case, we use (6) to compute

q =


2√
2

1√
2

1√
2

 ,

so that 2 sin θ = |q| =
√

3. This implies that θ = arcsin(
√

3
2

) = π
3
, and that u is parallel to

(2, 1, 1), as we began with in the previous example.

We can double-check the angle calculation with the Cosine Test. In this case, we have

cos θ =
trace(R)− 1

2
=

1

2

(
5

6
+

7

12
+

7

12
− 1

)
=

1

2
,

so that θ = arccos(1
2
) = π

3
once again.

Question: Theorem 4 assumes that R 6= RT . What if R = RT ? In this case we get
R−RT = 0, the zero matrix, so that q = 0, the zero vector. From this we can deduce that
sin θ = 0, so that either θ = 0 or θ = π. If θ = 0, then R is the identity rotation, and this
would be obvious immediately, since R would be the identity matrix! So if R 6= I we know
that θ = π. But what is the axis of rotation? Since θ = π in this instance, we have

R = PSπP
T = P

 −1 0 0
0 −1 0
0 0 1

P T = −vvT −wwT + uuT .

Since v,w,u form an orthonormal basis, vvT + wwT + uuT = I, the identity matrix
(Why?), so that

R = −vvT −wwT − uuT + 2uuT = −I + 2uuT ,

and 2uuT = I + R. But the columns of the matrix uuT are each parallel to u (Why?), so
the vector u can be obtained by taking any non-zero column of I + R and normalizing to
a unit vector.
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3. Summary

To compute Rθ,u from a unit vector u and an angle θ:

(1) Choose any unit vector v such that v ⊥ u.

(2) Set w = u× v and set P =

 v w u

.

(3) The matrix Rθ,u is given by

Rθ,u = PSθP
T =

 v w u


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1


 vT

wT

uT

 .

To compute u and θ from a rotation matrix R:

(1) If R 6= RT , then set q =

 r32 − r23

r13 − r31

r21 − r12

.

In this case R = Rθ,u where u = q/|q| and sin θ = |q|/2, and cos θ = trace(R)−1
2

.

(2) If R = RT and R 6= I then R = Ru,π where u is a unit vector parallel to any non-zero
column of I +R.

(3) If R = I then R is the identity rotation (angle zero, everything stays fixed).
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Exercises:

1. Compute the matrix Rπ
4
,(1,1,1).

2. Compute the matrix Rπ
6
,(0,1,0).

3. Compute the matrix Rπ,(2,0,1).

4. Compute the matrix R2π,(2,0,1).

5. Compute the angle θ and axis of rotation u for the rotation matrix

R =


1√
2

1√
3
− 1√

6

0 1√
3

2√
6

1√
2
− 1√

3
1√
6

 .

6. Compute the angle θ and axis of rotation u for the rotation matrix

R =


1√
5

2√
6

2√
30

2√
5
− 1√

6
− 1√

30

0 1√
6
− 5√

30

 .

7. Compute the angle θ and axis of rotation u for the rotation matrix

R =


−2

3
−2

3
−1

3

−2
3

1
3

2
3

−1
3

2
3
−2

3

 .

8. Suppose that R = Rθ,u. Prove that R−1 = R−θ,u.

9. Suppose that R = Rθ,u. Prove that RT = R−θ,u.

10. Suppose that R = Rθ,u. Prove that R2 = R2θ,u.

11. Prove that R−θ,u = Rθ,−u.

12. Suppose that R = Rπ,u. Prove that (I +R)v = 0 and that (I +R)w = 0.
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Selected Solutions:

1. Rπ
4
,(1,1,1) =


1
3

+ 2
3
√

2
1
3
− 1√

6
− 1

3
√

2
1
3

+ 1√
6
− 1

3
√

2
1
3

+ 1√
6
− 1

3
√

2
1
3

+ 2
3
√

2
1
3
− 1√

6
− 1

3
√

2
1
3
− 1√

6
− 1

3
√

2
1
3

+ 1√
6
− 1

3
√

2
1
3

+ 2
3
√

2

 .

2. Rπ
6
,(0,1,0) =


√

3
2

0 1
2

0 1 0

−1
2

0
√

3
2

 .

3. Rπ,(2,0,1) =


3
5

0 4
5

0 −1 0
4
5

0 −3
5

 .

4. R2π,(2,0,1) = I =


1 0 0

0 1 0

0 0 1

 .

5. q =


−
√

2−2√
6

−
√

3−1√
6

− 1√
3

 , and R = Ru,θ, where u = q
|q| ≈


−0.743

−0.594

−0.308


and θ = arcsin( |q|

2
) = arccos( trace(R)−1

2
) ≈ 1.217 radians.

6. q =


1√
6

+ 1√
30

2√
30

2√
5
− 2√

6

 , and R = Ru,θ, where u = q
|q| ≈


0.845

0.522

0.111


and θ = arcsin( |q|

2
) = arccos( trace(R)−1

2
) ≈ 2.785 radians.

7. Since RT = R and R 6= I, it follows that θ = π. We then compute

I +R =


1
3
−2

3
−1

3

−2
3

4
3

2
3

−1
3

2
3

1
3

 ,

so that u =


1√
6

− 2√
6

− 1√
6

 and R = Rπ,( 1√
6
,− 2√

6
,− 1√

6
).
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