Lectures notes on rotations (with exercises)
92.222 - Linear Algebra II - Spring 2005
by D. Klain

1. How to compute the orthogonal matrix that represents a rotation of R3

Recall that the 2 x 2 matrix
[ cosf) —sinf ]
Ay =

sin 0 cos 6

rotates the plane R? counter-clockwise by the angle § around the origin. Is there a similar
way to represent rotations of 3-dimensional space using 3 x 3 matrices?

Consider the simple case of rotating 3-dimensional space by the same angle 6 counter-
clockwise around the z-axis. This is analogous to rotating the earth by the angle 6 around
the north pole, for example. This rotation fixes the z-axis, and acts on the xy-plane in
the exactly the same way as the 2 x 2 matrix Ay above. Therefore, the matrix of rotation
around the z-axis by the counter-clockwise angle 6 is given by

cosf@ —sinf 0
Sg=| sinf  cosf 0 |,
0 0 1

where we assign the column vector (1,0,0)7 to the z-axis, (0,1,0)7 to the y-axis, and
(0,0,1)7 to the z-axis.

Note that, like Ay, the matrix Sy is an orthogonal matriz, that is,

SpS; =1 or, equivalently, S; =S,

More generally, suppose we rotate 3-dimensional space counter-clockwise by the angle
around a different axis through the origin, pointing along the direction of some unit vector
u € R?. For this we need the analogue of the matrix Sy, for which the z-axis is replaced by
a different axis of rotation, the line passing through the point u and the origin o. Let us
call this new rotation matrix Ry, depending as it does on both the choice of axis u and
the angle of rotation 6.

To compute Ry, choose a unit vector v that is orthogonal to u; that is, so that u-v = 0.
Let w = u x v, where x denotes the vector cross product in R3. We now have a new
orthonormal basis for R?, {v,w,u} such that v x w = u. (It might help the reader to
sketch this basis, where u is the vector pointing upwards in your picture, in analogy to the
z-axis.)

Let P denote the matrix having v, w,u as its three columns (in that exact order):

P=|v|w|u|, (1)



Note that P is an orthogonal matrix, PT P = I, since the columns of P were (deliberately)
chosen to form an orthonormal set. Note in particular that

vl viu 0
PTu = wi  |Ju=|wlu|=|0], (2)
u’ u’u 1
and that, similarly,
1 0
Plv=10 and Plw=|1
0 0

Theorem 1 The matriz Ry, that rotates R3 around the vector u by the counterclockwise
angle 0 is given by the formula
Ryu = PSP (3)

Proof of Theorem 1: To begin, consider what the transformation PSy;PT does to the
vectors v, w,u. The matrix PSyPT fizes u; indeed, by (1) and (2),

0 0
PSgPTu=PS, | 0 | =P |0 | =u
1 1
Similarly,
1 cosf |
PSyP'v=PSy | 0 | =P | sinf | =cosfv +sinfw,
0 0 |
while -
0 —sind
PSyPTw=PSy| 1 | =P| cosb = —sinfv + cosfw.
0 0 |
More generally, if X = av + bw + cu is any vector in R® (expressed in terms of the

orthonormal basis {v, w,u}) then

PSQPTX = CLPSQPTV+bPSQPTW+CPSQPTu
= a(cos@v +sindw)+b(—sinfv +cosfw) +cu = RpuX,

rotating X counterclockwise by 6 in the vw-plane orthogonal to the axis of rotation u. i

The identity (3), together with the orthogonality of P and Sy, implies that Ry, is also an
orthogonal matrix. More precisely, we have the following corollary.

Corollary 2 A rotation matrix R is an orthogonal matriz with determinant 1.

2



Proof: If R is a rotation matrix then R = PSyPT, where PT = P~! and S} = S, ', as in
Theorem 1. Therefore,

RTR = (PS,P")'PSy,P" = PS] P"PS,P" = PS, SgP" = PP" =1,

so that R is an orthogonal matrix. Moreover,

det(R) = det(PSyPT") = det(PSyP~") = det(P) det(Sy) -

Remark: The converse of the Corollary is also true: A matrix R is a rotation matrix if
and only if R is an orthogonal matrix and det(R) = 1. But we will not prove this now.

Example: Find the matrix Rz , that rotates R? by the counterclockwise angle /3 around
the axis through the vector u = (2,1, 1).

Solution: To begin, find a vector v that is perpendicular to u = (2,1,1). An easy choice is
v = (0,1, —1). We then set w = u x v, so that

ij k
w=det |2 1 1|=(-222).
01 —1

We now have an orthogonal set {v,w,u}, where v x w = u and u is parallel to our desired
axis of rotation. Unfortunately, however, the vectors v, w,u are not unit vectors. This is
easily fixed: dividing each vector by its length, re-assign the variables v, w,u to form the
orthonormal set:

(© 1 1 ) ( 1 1 1 ) ( 2 1 1 )
V= [~ R =~ W=\—""7%=,—"7=—F= u=\— 7= =
V2' V2 33 V3 V6 V6 V6
so that
i 0 —L1L Z
L Y
P=|v|iw|lu|= ? ? ?
L V2 V3 V6
It now follows from Theorem 1 that
_1 27 1 V3 1 1
S B A I
T
Rew=PSsPi =\ 5 5 G ||% 10| TGV v
_ 1 11 2 1 1
Vi o vs vell| 0 0 1 /6 V6 V6
After multiplying these matrices, we obtain
5 1 11 1
1 ‘ 1 6_7ﬁ 61+27\/15
Rzuw=|5%T2z 12 1 v (4)
11 1,11
6 2v2 12 2 12



2. How to compute the rotation of R? represented by a given orthogonal matrix

Now suppose you are given an orthogonal matrix R such that det R = 1; in other words, a
rotation matrix. What is the axis of rotation for R? What is the angle of rotation? How
do we compute u and 6 so that R = Ry 7

Here is one quick test to find #. Recall that the trace of a square n x n matrix A is the
sum of its diagonal entries: trace(A) = Ay + Ago + -+ - + A

Theorem 3 (The Cosine Test) If R is a rotation matriz having angle of rotation 6,

then
trace(R) — 1

2

cosf =

()

Proof: We will need the fact that if A is any square n x n matrix, and P is an n X n
invertible matrix, then trace(PAP~!) = trace(A). This is a consequence of the fact that,
for any two n x n matrices A and B, we have trace(AB) = trace(BA). (You can check this
directly by using the matrix multiplication formula.)

If R is a rotation matrix having angle of rotation ¢, then R = Ry, for some unit vector u,
so that R = PSyPT = PSyP~!, as in (3). Hence,

trace(R) = trace(PSyP~') = trace(Sy) = 1+ 2cos b,

from which the formula (5) above immediately follows. 1l

The Cosine Test, while very easy to use, doesn’t tell the whole story, since the axis of
rotation u remains unknown. Moreover, there remains an ambiguity regarding the value of
0, since we only know cosf. Since cosf = cos(—6), the sign of the angle remains obscure.

Fortunately it takes only a tiny bit of work to compute u. The key is to remember that
if u lies in the axis of rotation, then the rotation R fixes the vector u. In other words,
Ru = u. Since the inverse matrix R~! will represent rotation around the same axis u by
the negative of the angle 0, we also have R~'u = u. Recall that R is an orthogonal matrix,
so that RT = R~!. It now follows that R"u = R~'u = u, so that

(R—R"u=Ru—-R'u=u—-u=0.
This suggests that we can discover the vector u by considering the null space of the matrix
R— RT.

Denote
i1 Ti2 T13
R= |1 7o 793
31 T32 T33



We then have

0 T12 —T21 T13 —T31 0 a [
T
R—R = | ro—rp 0 Tos—T32 | = | —a 0 v,
T3] —T13 T32 — T'23 0 -8 -y 0

where we denote o« = 119 — ro1, B = r13 — 31, and v = ro3 — r3o. This suggests that u is
parallel to the vector

- T32 — 723
q= Bl=|mrs—rs |, (6)
— T21 — T2

assuming this vector is not the zero vector (which might happen sometimes).

We summarize this result, and make it more precise, with the following theorem.

Theorem 4 (The Symmetric Difference Test) Suppose that R is a rotation matriz,
and suppose that RT # R, so that the vector q # 0. Then the axis of rotation of R is
parallel to . More specifically, the matriz R rotates R® by a positive counterclockwise
angle 6 around the unit vector u, where

q = 2(sinf) u.

Note, in particular, that 2sinf = |q| and u = ‘%. Using both Theorem 3 and Theorem 4
we obtain the axis of rotation, with direction and orientation provided by u, and the exact
value of the angle 0, from the values of cosf and sin 6.

Proof: Suppose that R = Ry, = PSpPT as in (3). Then

0 a 0 —2sinf 0
—a 0 v | =R-R"=PSyP"—PS; P" = P(Sy—S; )P" = P | 2sind 0 0|P"
-8 —y 0 0 0 0
0 —2sinf 0 vl
=|v|wlu 2sin 6 0 0 wl = 2(sin 0)(wv’ — vw?’),
0 0 0 u’
so that

a = 2sin@(vow; — viwsy), [ = 2sinf(vzw; — viwsz), v = 2sinf(vswy — vows).

In other words,
-
q= B | =2(sinf) v x w=2(sinf) u.
—«



Example: Let’s use Theorem 4 to check the work we did in the last example, where

5 1 1 1
6 6 w3 6 a3
| L4 1 7 1 1
R= 6+22 12 12 V2
i1 14 1 7
6 22 1212 12
In this case, we use (6) to compute
2
V2
1
a=| |
1
V2

so that 2siné = |q| = v/3. This implies that § = arcsin(%?) = Z, and that u is parallel to
(2,1,1), as we began with in the previous example.

We can double-check the angle calculation with the Cosine Test. In this case, we have

Cose_trace(R)—1_1(5+7+7_1>_1
N 2 S 2\6 12 12 a

=T

3 Once again.

so that 6 = arccos(3)

Question: Theorem 4 assumes that R # RT. What if R = RT? In this case we get
R — RT =0, the zero matrix, so that q = 0, the zero vector. From this we can deduce that
sinf = 0, so that either # =0 or § = «w. If § = 0, then R is the identity rotation, and this
would be obvious immediately, since R would be the identity matrix! So if R # [ we know
that # = 7. But what is the axis of rotation? Since # = 7 in this instance, we have

-1 00
R=PS.PP=pP| 0 -1 0 |P'=—-vv!l —ww! +uu’.
0 01
Since v, w,u form an orthonormal basis, vv’ + ww’! + uu’ = I, the identity matrix
(Why?), so that
R=—vw —ww! —uu” +2uu’ = - + 2uu’,

and 2uu? = I + R. But the columns of the matrix uu’ are each parallel to u (Why?), so

the vector u can be obtained by taking any non-zero column of I + R and normalizing to
a unit vector.



3. Summary

To compute Ry, from a unit vector u and an angle 6:
(1) Choose any unit vector v such that v L u.
(2) Setw=uxvandset P=| v|w|u

(3) The matrix Ry, is given by

cosf) —sinf 0 vl
Rou=PSyPT = | v|w|u sinf  cosf 0 wl .
0 01 u’
To compute u and # from a rotation matrix R:
T32 — T23
(1) If R # RT, then set q = | ri3 — 731
21 — T12

trace(R)—1

In this case R = Ry where u = q/|q| and sinf = |q|/2, and cosf = 5

(2) If R = R" and R # I then R = R, , where u is a unit vector parallel to any non-zero
column of I 4 R.

(3) If R =TI then R is the identity rotation (angle zero, everything stays fixed).



Exercises:

1. Compute the matrix Rz 11,1)-
2. Compute the matrix Rz (0,1,0)-
3. Compute the matrix Rr 20,1)-
4. Compute the matrix Rox (2,0,1)-
5. Compute the angle  and axis of rotation u for the rotation matrix
1 1 1
R=| 0 5 %
1 1 1
V2 V3 V6

1 2 2

5 6 V30

R — 2 _ 1 1
— | V5 V6 V30
0 1 _ 5

6 V30

7. Compute the angle # and axis of rotation u for the rotation matrix

|

|
W W win

|
WIN W W=

W= WIN WIN

R =

8. Suppose that R = Ry,. Prove that R™' = R_g .

9. Suppose that R = Ry,. Prove that RY = R_4,,.

10. Suppose that R = Ry,. Prove that R? = Rag .

11. Prove that R_py = Ry —u.

12. Suppose that R = R, ,. Prove that (I + R)v = 0 and that (/ + R)w = 0.



Selected Solutions:

-1 2 11 11, 1 1
JSTRE L ST VE e BT T e
L Rzaan=|3V5"55 35T53 3 v 33
i1 1 l_l_L_L l_|_L
L3 V6 3v2 3 6 3v2 3 T 3,/2
[ V3 1]
5 0 3
2. Rz =| 01 fo
1 3
73 0 %]
3 4 A
5 03
3. Rrgqoy=10 -1 0
4 3
5 0 =5
1 0 0
4. Ropooy=1=0 10
0 0 1
—/2-2
N —0.743
5. q= _\/\/%_1 ,and R = Ry, Whereu:&z —0.594
1 JE—
~ 0.308

and 0 = arcsin('3) = arccos(%) ~ 1.217 radians.

[\

1 1
NG + 730 0.845
6. q= \/% , and R = Ry, where u = \%ﬂ ~ | 0.522
- % 0.111
5 V6

and 0 = arcsin(%) = arccos(%) ~ 2.785 radians.

7. Since RT = R and R # I, it follows that § = 7. We then compute

1 2 _1
3 3 3
_ | _2 4 2
I'+R= 3 3 3 |
_1 2 1
3 3 3
1
V6
2
sothatu=| = |and R=R_,1 =2 1,.
\{6 Wv(%v_ﬁv_%)
V6



