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Announcements

Homework # 1 is posted online.

Any questions?
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Fluid Motion 101

Newton’s Laws will govern the motion of a fluid.

Today’s key concept:∑
~F =

∂(momentum)

∂t
=
∂(m~u)
∂t

= ~u
∂m
∂t︸︷︷︸

Changing Mass

+ m~a︸︷︷︸
acceleration

(1)

First: The forces acting on a control volume.

Second: The resulting change in momentum of the fluid.



Formalizing External Forces: Body Forces

Body or Volume Forces: result from the fluid being placed in a
force field :

Gravity (Conservative)
Electrostatic (Conservative)
Magnetic (Conservative)
Electromagnetic

Conservative forces:
Work done by the force is independent of the path∑

(PE + KE) = Const.

The body force acts on the volume of fluid (hence does not "touch"

the fluid, but acts "on" the fluid)

eg:

~F(t)vol =

∫∫∫
MV(t)

ρ~gdV



Formalizing External Forces: Body Forces

Representing body forces:
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Formalizing External Forces: Surface Forces

Surface forces: Act by direct contact on an area

Expressed as "per area" quantities

Pressure (Normal force per unit area)→ FN =
∫∫
−p · d~A

Shear stress (Tangential force per unit area)→ Ft =
∫∫

τdA

9 components make up the stress tensor at a given point (more

later in the course):



Formalizing External Forces: Surface Forces

Representing surface forces due to normal stress/pressure:



Formalizing External Forces: Surface Forces

Representing surface forces due to shear stresses:
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Formalizing External Forces: Line Forces

Line forces: Act along a contact line.
Expressed as "per length" quantities

Surface tension requires 2 fluids in contact.
Surface tension→ Fσ =

∫
σdl

Surface tension acts perpendicular to a cut line.



Formalizing External Forces: Line Forces

Representing line forces due to surface tension:



Formalizing External Forces: Putting it all together

Determine the NET force on a volume of fluid.

This is the force that will produce a momentum change.
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Integral Conservation of Linear
Momentum:Material Volume

At any material point, ∂(m~u)∂t = m~a =
∑
~F applies

For an infinitesimal material volume:

m = ρδV = ρδxδyδz

and:

~a =
∂~u
∂t

So, for a single material particle/infinitesimal volume:

m~a = (ρδV)

(
∂~u
∂t

)
=
∂(ρ~uδV)

∂t
= ~F



Integral Conservation of Linear Momentum:
Material Volume

To apply conservation of momentum over the entire material

volume, we sum (integrate) the infinitesimal contributions of all

material particles over the the volume:

d
dt

∫∫∫
MV(t)

ρ~u︸︷︷︸
momentum per vol

dV =
∑

~FMV(t)

Recall, that the conservation of mass statement (for MV) is similar:

d
dt

∫∫∫
MV(t)

ρdV = 0
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Integral Conservation of Linear Momentum:
Material Volume

We can generalize this into a transport law for material volumes,

which states:
dB
dt

=
d
dt

∫∫∫
MV(t)

ρbdV

Where b is the per unit mass representation of the quantity B.

Property B b

Mass ms 1

Linear Momentum ms~u ~u

Angular Momentum ~r × ms~u ~r ×~u
Kinetic Energy 1

2 ms‖~u‖2 ‖~u‖2

2
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Control Volume Integral Conservation Transport
Equation

Laws of physics are usually/commonly written for a fixed mass of

material in a Lagrangian description (or Material Volume)

We want to be able to calculate:

dB
dt

=

∫∫∫
MV

ρ
Db
Dt

dV

using an Eulerian description of the fluid.

To do this, we must take a brief detour to understand how to

calculate change in a property w.r.t. time.



ASIDE: Eulerian Description

Eulerian description: examines fluid properties at an individual

stationary point

Independent variables: ~r′ position in space, t′ time.

A fluid property, F is expressed as F(~r′, t′)



ASIDE: Lagrangian Derivatives in an Eulerian
Description(KC section 3.3)

Lagrangian: time rate of change of a property F(~a, t), is computed

as we follow a material point.
How do we compute this same important rate of change in an
Eulerian or field description?

∂
∂t [F(~r

′, t′)] 6= ∂
∂t [F(~a, t)]

In the Lagrangian we are following the material particles, not
staying fixed in space.

So, (
∂[F(~r′, t′)]

∂t

)
a
=?

Ie. What is the rate of change of a property if we follow a particle,

if we were to measure only at a fixed field point?



ASIDE: Lagrangian Derivatives in an Eulerian
Description(KC section 3.3)



ASIDE: Lagrangian Derivatives in an Eulerian
Description (KC section 3.3)

Consider the property F when ~r(~a, t) = ~r′ and t = t′:

F(~a, t) = F[~r(~a, t)] = F(~r′, t′)

Let’s differentiate, careful to use the chain rule:[
∂F(~a, t)
∂t

]
~a
=

(
∂F
∂t′

)
~r′

(
∂t′

∂t

)
+

(
∂F
∂~r′

)
t′
·
(
∂~r′

∂r

)
·
(
∂~r
∂t

)
~a

Review: Chain Rule

∂z
∂t

=
∂z
∂x
∂x
∂t

+
∂z
∂y
∂y
∂t

(2)



ASIDE: Lagrangian Derivatives in an Eulerian
Description (KC section 3.3)

Let’s look term by term and simplify the equation:[
∂F(~a, t)
∂t

]
~a

=

(
∂F
∂t′

)
~r′�

�
��

(
∂t′

∂t

)
︸ ︷︷ ︸

t=t′

+

(
∂F
∂~r′

)
t′︸ ︷︷ ︸

spatial gradient of F

·
�
�
��

(
∂~r′

∂r

)
︸ ︷︷ ︸

no frame rotation→I

·
(
∂~r
∂t

)
~a︸ ︷︷ ︸

=~u

And, therefore: (
∂F
∂t

)
a
=
∂F
∂t′

+
(
∇′F

)
·~u =

DF
Dt



ASIDE: Lagrangian Derivatives in an Eulerian
Description (KC section 3.3)

The result is the Material Derivative:(
∂F
∂t

)
a
=
∂F
∂t

+~u · (∇F) =
DF
Dt

Which is a combination of:
1 The local rate of change of F w.r.t. time (ie. the change in F w.r.t.

time as we sit at ~r′):
∂F
∂t

2 The convective, or advective rate of change of F w.r.t. time (ie. the
change in F w.r.t. time due to the particle moving from one location
to another, as measured in a field reference frame):

~u · (∇F)



ASIDE: Lagrangian Derivatives in an Eulerian
Description(KC section 3.3)

Consider a fluid with a known temperature gradient flowing in a

tank.



ASIDE: Lagrangian Derivatives in an Eulerian
Description(KC section 3.3)



Control Volume Integral Conservation Transport
Equation

Returning to our integral conservation law expression.

Recall: We want to be able to calculate:

dB
dt

=

∫∫∫
MV

ρ
Db
Dt

dV

using an Eulerian description of the fluid.

Must invoke the material derivative for the acceleration term:

dB
dt

=

∫∫∫
MV

ρ

(
∂b
∂t

+ (~u · ∇)b
)

dV



Control Volume Integral Conservation Transport
Equation

Mathematical manipulation of the material derivative:

ρ
Db
Dt

= ρ
∂b
∂t

+ ρ (~u · ∇) b

= ρ
∂b
∂t

+

∇·(a~A)=a(∇·~A)+(~A·∇)a : Vector Ident.︷ ︸︸ ︷
∇ · (ρ~ub)− b∇ · (ρ~u)

= ρ
∂b
∂t

+

∇·(ρ~u)=− ∂ρ
∂t : Cons. of mass︷ ︸︸ ︷

∇ · (ρ~ub) + b
∂ρ

∂t

ρ
Db
Dt

=
∂ρb
∂t

+∇ · (ρ~ub)︸ ︷︷ ︸
Eulerian Conservation Form (CFD)



ASIDE: Control Volume Integral Conservation
Transport Equation

This particular result is rather interesting:

ρ
Db
Dt

= ρ
∂b
∂t

+ ρ (~u · ∇) b

=
∂ρb
∂t

+∇ · (ρ~ub)

Why? The two equations represent the change of a property b

with respect to time. (1) is the traditional material derivative

statement, (2) indicates a conservative quality – that the change in

the material property b has contributions due to changes of the

property b in the differential volume and the divergence (or flux) of

the property b through the CS (fascinating – we’ll see this

template equation later in the CFD lecture!)



Control Volume Integral Conservation Transport
Equation

Back to the derivation:
dB
dt

=

∫∫∫
MV

ρ

(
∂b
∂t

+ (~u · ∇)b)
)

dV

=

From derivation on previous slide︷ ︸︸ ︷∫∫∫
CV

(
∂(ρb)
∂t

+∇ · (ρ~ub)
)

dV

dB
dt

=

∫∫∫
CV

∂(ρb)
∂t

+

Gauss′s Theorem, see aside︷ ︸︸ ︷∫∫
CS
ρb (~u · n̂) dS

This is a general statement of the time derivative of B with respect

to t in a Material Volume (Lagrangian) in terms of an Eulerian

description.



Control Volume Integral Conservation Transport
Equation

Aside: Gauss’s theorem:



Control Volume Integral Conservation Transport
Equation

It is easier to deal with, however, if we pull the time rate of change

out of the first integral (careful to apply Leibniz’s Theorem

correctly):

dB
dt

=
d
dt

∫∫∫
CV(t)

ρbdV +

∫∫
CS(t)

ρb
(
(~u− ~VCS) · n̂

)
dA

This is more general than the statement you had learned about in

undergraduate texts which implies that the control volume to be

fixed in space – which is a special case of this expression.



Control Volume Integral Conservation Transport
Equation

dB
dt︸︷︷︸

Lagrangian

=
d
dt

∫∫∫
CV
ρbdV︸ ︷︷ ︸

Rate of change of B inside CV

+

∫∫
CS
ρb
(
(~u− ~VCS) · n̂

)
dA︸ ︷︷ ︸

Flux of B though CS

Property B b

Mass ms 1

Linear Momentum ms~u ~u

Angular Momentum ~r × ms~u ~r ×~u
Kinetic Energy 1

2 ms~u2 ~u2

2



Control Volume Integral Conservation Transport
Equation

Transport equation:

dB
dt

=
d
dt

∫∫∫
CV
ρbdV +

∫∫
CS
ρb
(
(~u− ~VCS) · n̂

)
dA

Conservation of Mass, b = 1:

dMass
dt Lagrangian

= 0 =
d
dt

∫∫∫
CV
ρdV +

∫∫
CS
ρ
(
(~u− ~VCS) · n̂

)
dA

The general transport theorem works for getting conservation of

mass.



Integral Conservation of Momentum for a Control
Volume

Transport equation:

dB
dt

=
∂

∂t

∫∫∫
CV
ρbdV +

∫∫
CS
ρb
(
(~u− ~VCS) · n̂

)
dA

Conservation of momentum, b = ~u – momentum per unit mass:

d~M
dt

=
∂

∂t

∫∫∫
CV
ρ~udV +

∫∫
CS
ρ~u
(
(~u− ~VCS) · n̂

)
dA

=

∫∫
CS
(−pn̂)dS +

∫ ∫
CS
τdS +

∫∫∫
CV
ρ~gdV + ~Fapplied



Integral Conservation of Momentum for a Control
Volume

Let’s pay some attention to the RHS of the equation and what it says:

=

∫∫
CS
(−pn̂)dS +

∫∫
CS
τdS +

∫∫∫
CV
ρ~gdV + ~Fapplied

The conservation of linear momentum expression says that the rate of
change of momentum is equal to the sum of forces applied to the control
volume. Some tips:

Whenever a solid surface is cut by the control surface, an external force
should be applied to the control volume at that point.

If in doubt, always draw and account for the pressure (normal stress)
and shear stress on all sides of the control surface.

The mass and any body forces should be accounted for in the problem.



Integral Conservation of Momentum for a Control
Volume

Be careful to see what the momentum equation means.
1 It is a vector equation – one equation for each momentum/force direction
2 Tricky: The normal velocity out of the control surface may not be the same direction

as the momentum flux out of that control volume – see example.
3 The forces causing the change in momentum can be volume forces, surface forces,

or point loads. The total effect of all of these forces on the CV/CS must equate to the
change in momentum.

∂

∂t

∫∫∫
CV
ρuxdV +

∫∫
CS
ρux

(
(~u− ~VCS) · n̂

)
dA =

∑
FTx → xdirection

∂

∂t

∫∫∫
CV
ρuydV +

∫∫
CS
ρuy

(
(~u− ~VCS) · n̂

)
dA =

∑
FTy → ydirection

∂

∂t

∫∫∫
CV
ρuzdV +

∫∫
CS
ρuz

(
(~u− ~VCS) · n̂

)
dA =

∑
FTz → zdirection



Integral Conservation of Momentum for a Control
Volume: Examples

Conservation of Mass, b = 1:

dMass
dt Lagrangian

= 0 =
d
dt

∫∫∫
CV
ρdV +

∫∫
CS
ρ
(
(~u− ~VCS) · n̂

)
dA

Conservation of momentum, b = ~u – momentum per unit mass:

d~M
dt

=
∂

∂t

∫∫∫
CV
ρ~udV +

∫∫
CS
ρ~u
(
(~u− ~VCS) · n̂

)
dA

=

∫∫
CS
(−pn̂)dS +

∫ ∫
CS
τdS +

∫∫∫
CV
ρ~gdV + ~Fap

=
∑

~FT
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