
SIAM J. OPTIM. c© 2019 Society for Industrial and Applied Mathematics
Vol. 29, No. 4, pp. 2697–2724

ADAPTIVE DOUGLAS–RACHFORD SPLITTING ALGORITHM
FOR THE SUM OF TWO OPERATORS∗

MINH N. DAO† AND HUNG M. PHAN‡

Abstract. The Douglas–Rachford algorithm is a classical and powerful splitting method for
minimizing the sum of two convex functions and, more generally, finding a zero of the sum of
two maximally monotone operators. Although this algorithm is well understood when the involved
operators are monotone or strongly monotone, the convergence theory for weakly monotone settings is
far from being complete. In this paper, we propose an adaptive Douglas–Rachford splitting algorithm
for the sum of two operators, one of which is strongly monotone while the other one is weakly
monotone. With appropriately chosen parameters, the algorithm converges globally to a fixed point
from which we derive a solution of the problem. When one operator is Lipschitz continuous, we prove
global linear convergence, which sharpens recent known results.
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1. Introduction. Inclusion problems that involve finding a zero of the sum of
two set-valued operators play an important role in various areas of variational analysis
and optimization. For instance, under some constraint qualifications, the classical
optimization problem of minimizing the sum of two convex functions can be converted
to the problem of finding a zero of the sum of subdifferential operators of these
functions. One popular approach for the sum of two maximally monotone operators
is to employ the Douglas–Rachford (DR) algorithm. This algorithm was originally
introduced in 1956 by Douglas and Rachford [22] to numerically solve a system of
linear equations arising in heat conduction. In 1979, Lions and Mercier made the
algorithm applicable to a broad class of optimization problems through the seminal
work [30]. More specifically, they proved that each sequence generated by the DR
algorithm converges weakly to a fixed point which is then used to derive a solution of
the original problem. This result was later strengthened by Svaiter [36] in which weak
convergence of the shadow sequence to a solution was shown. In the formulation of
the DR algorithm, each step involves computing the resolvent of a single operator, and
hence it is often referred to as a splitting algorithm. Since mathematical structures
emerging from applications are usually complex and difficult to analyze as a whole
object, the idea of splitting is extremely important as it helps the calculation on simple
components that make up the entire mathematical model. It is worth mentioning (see,
e.g., [23]) that several splitting methods such as the method of partial inverses [35]
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and the alternating direction method of multipliers (ADMM) [25] can be written in
the form of the DR algorithm, which itself can be transformed into the proximal point
algorithm [34]. Other splitting schemes can be found in [13, 14, 16] and the references
therein.

When applied to two normal cone operators, the DR algorithm can be used to
solve the feasibility problem of finding a common point of two sets. In this context,
the DR algorithm possesses many good properties; for example, it finds a best ap-
proximation point when the intersection of sets is empty [3, 5, 8], it finds an exact
solution after only a finite number of iterations under verifiable conditions [1, 4, 7],
and it converges globally in some nonconvex settings [9, 19] while it converges locally
with linear or sublinear rate under some regularity assumptions [11, 29, 33]. In the
absence of constraint qualifications, [6] suggests that the DR algorithm outperforms
the well-known method of alternating projections. In attempting to generalize the DR
algorithm for feasibility problems, several parameters were added to its formulation
[12, 17, 18, 24]. In this case, one has the freedom to modify the parameters that
are associated with the projections without giving up the solution. This approach
is possible because the underlying normal cone operators have homogeneous values,
which allows for scaling them independently. The situation changes completely when
working with general problems where two involved operators may no longer have such
homogeneity. In this case, a naive scaling may destroy the ability to solve the orig-
inal problem. Therefore, we aim to overcome this hurdle by proposing an adaptive
approach.

The paper is devoted to the convergence analysis of the adaptive DR algorithm for
finding a zero of the sum of α- and β-monotone operators, in which α-monotonicity
is a unification of strong and weak monotonicity (see Definition 3.1). This situation
arises in various important applications; see [27] for a brief discussion. The main
contributions are summarized below.

(R1) We incorporate parameters into the DR algorithm so that the weak con-
vergence to some fixed point is achieved (see Theorem 4.5). The chosen parameters
then allow us to derive a solution to the original problem by using the shadow of
the fixed point. In addition, the shadow sequences converge strongly to the solution
whenever the strong monotonicity strictly outweighs the weak counterpart. We show
by a simple proof that the rate of asymptotic regularity of the adaptive DR operator
is o(1/

√
n). As expected, these results are also valid for the classical DR algorithm.

(R2) Under the Lipschitz continuity assumption, we prove that the convergence
is strong with linear rate (see Theorems 4.8 and 4.14) and that our linear rate re-
fines previous results (see Corollary 4.10 and Remark 4.11). We note a particular
result in Theorem 4.8(ii) that when one operator is Lipschitz continuous and the
other operator is strongly monotone, the adaptive DR algorithm converges linearly
as long as the strong monotonicity constant is greater than the Lipschitz constant.
This is interesting since no monotonicity assumption is imposed on the Lipschitz
operator!

To the best of our knowledge, the results are new and encompass several con-
temporary works in this direction. Indeed, our results provide a consolidation for
the classical DR algorithm and its adaptive version. In particular, we show how the
parameters play a role in the convergence analysis of the algorithm.

The remainder of the paper is organized as follows. Section 2 supplies definitions
and facts that are necessary for our analysis. In section 3, we define and study various
relevant properties of α-monotone operators with and without Lipschitz assumptions.
The main results for the adaptive DR algorithm and its convergence analysis are
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presented in section 4. Section 5 contains some applications to structured minimiza-
tion problems. Finally, concluding remarks and comments are given in section 6.

2. Preliminaries. Throughout this work, X is a real Hilbert space with inner
product 〈·, ·〉 and induced norm ‖ · ‖. The set of nonnegative integers is denoted
by N, the set of real numbers by R, the set of nonnegative real numbers by R+ :=
{x ∈ R | x ≥ 0}, and the set of the positive real numbers by R++ := {x ∈ R | x > 0}.
We use the notation A : X ⇒ X to indicate that A is a set-valued operator on X and
the notation A : X → X to indicate that A is a single-valued operator on X.

Let A be an operator on X. The domain of A is domA := {x ∈ X | Ax 6= ∅}, the
graph of A is graA := {(x, u) ∈ X ×X | u ∈ Ax}, and the set of fixed points of A is
FixA := {x ∈ X | x ∈ Ax}. The inverse of A, denoted by A−1, is the operator with
graph graA−1 := {(u, x) ∈ X ×X | u ∈ Ax}. We say that A is Lipschitz continuous
with constant ` ∈ R+ if it is single valued and

(1) ∀x, y ∈ domA, ‖Ax−Ay‖ ≤ `‖x− y‖.

The operator A is nonexpansive if it is Lipschitz continuous with constant 1, i.e.,

(2) ∀x, y ∈ domA, ‖Ax−Ay‖ ≤ ‖x− y‖.

An operator A : X ⇒ X is said to be monotone if

(3) ∀(x, u), (y, v) ∈ graA, 〈x− y, u− v〉 ≥ 0,

and said to be maximally monotone if it is monotone and there exists no monotone
operator B : X ⇒ X such that graB properly contains graA. The resolvent of
A : X ⇒ X is defined by

(4) JA := (Id +A)−1,

where Id is the identity operator. The relaxed resolvent of A with parameter λ ∈ R+

is defined by

(5) JλA := (1− λ) Id +λJA.

Next, we recall an important characterization of maximally monotone operators.

Fact 2.1. Let A : X ⇒ X be monotone and let γ ∈ R++. Then dom JγA = X if
and only if A is maximally monotone.

Proof. By definition, dom JγA = ran(Id +γA) := (Id +γA)(X). Since γ ∈ R++,
it holds that γA is monotone. According to Minty’s theorem (see, e.g., [2, Theo-
rem 21.1]), dom JγA = ran(Id +γA) = X if and only if γA is maximally monotone.
By [2, Proposition 20.22], the latter occurs if and only if A is maximally monotone.

We conclude this section with the following useful identity whose omitted proof
is straightforward. For all s, t ∈ X and all σ, τ ∈ R,

(6) ‖σs+ τt‖2 = σ(σ + τ)‖s‖2 + τ(σ + τ)‖t‖2 − στ‖s− t‖2,

which is equivalent to

(7) σ‖s‖2 + τ‖t‖2 =
στ

σ + τ
‖s− t‖2 +

1

σ + τ
‖σs+ τt‖2

whenever σ + τ 6= 0.
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3. Relaxed resolvents of α-monotone operators.

Definition 3.1 (α-monotonicity). An operator A : X ⇒ X is said to be α-
monotone (α ∈ R) if

(8) ∀(x, u), (y, v) ∈ graA, 〈x− y, u− v〉 ≥ α‖x− y‖2.

The constant α is referred to as the monotonicity constant. We also say that A
is maximally α-monotone if it is α-monotone and there is no α-monotone operator
whose graph strictly contains graA.

We note that 0-monotonicity simply means monotonicity, that if α > 0, then
α-monotonicity is precisely the notion of strong monotonicity [2, Definition 22.1(iv)],
and that if α < 0, then α-monotonicity can be referred to as weak monotonicity.
For detailed discussions on maximal monotonicity and its variants as well as the
connection to optimization problems, we refer the reader to [2, 10, 15].

Lemma 3.2 (monotonicity versus α-monotonicity). Let A : X ⇒ X and let
α, β ∈ R. Then the following hold:

(i) A is α-monotone if and only if A− β Id is (α− β)-monotone.
(ii) A is maximally α-monotone if and only if A − β Id is maximally (α − β)-

monotone.
Consequently, A is (resp., maximally) α-monotone if and only if A − α Id is (resp.,
maximally) monotone.

Proof. (i) We first have the equivalences

(x, u) ∈ graA ⇐⇒ (x, u− βx) ∈ gra(A− β Id),(9a)

(y, v) ∈ graA ⇐⇒ (y, v − βy) ∈ gra(A− β Id),(9b)

and

(10) 〈x− y, u− v〉 ≥ α‖x−y‖2 ⇐⇒ 〈x− y, (u− βx)− (v − βy)〉 ≥ (α−β)‖x−y‖2,

from which the conclusion follows.
(ii) Assume that A is maximally α-monotone. By (i), A−β Id is (α−β)-monotone.

Now, suppose that A−β Id is not maximally (α−β)-monotone. Then there must exist
B′ : X ⇒ X such that B′ is (α− β)-monotone and gra(A− β Id) ( graB′. It follows
that B := B′+β Id is α-monotone due to (i) and that graA ( graB, which contradict
the maximal α-monotonicity of A. We deduce that if A is maximally α-monotone,
then A − β Id is maximally (α − β)-monotone. This also implies that if A − β Id is
maximally (α − β)-monotone, then A = (A− β Id) + β Id is maximally α-monotone,
and we are done.

Lemma 3.3 (resolvents of α-monotone operators). Let A : X ⇒ X be α-mono-
tone and let γ ∈ R++. Then the following hold:

(i) For all (x, a), (y, b) ∈ gra JγA,

〈x− y, a− b〉 ≥ (1 + γα)‖a− b‖2 and(11a)

‖x− y‖ ≥ (1 + γα)‖a− b‖.(11b)

(ii) If JγA is single valued, then, for all x, y ∈ dom JγA,

(12) 〈x− y, JγAx− JγAy〉 ≥ (1 + γα)‖JγAx− JγAy‖2,

i.e., JγA is (1 + γα)-cocoercive.
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Proof. (i) Let (x, a), (y, b) ∈ gra JγA. Then x ∈ (Id +γA)a, y ∈ (Id +γA)b, and so
x = a+ γu, y = b+ γv for some u ∈ Aa, v ∈ Ab. We derive from the α-monotonicity
of A that

〈x− y, a− b〉 = 〈(a+ γu)− (b+ γv), a− b〉(13a)

= ‖a− b‖2 + γ 〈a− b, u− v〉(13b)

≥ ‖a− b‖2 + γα‖a− b‖2(13c)

= (1 + γα)‖a− b‖2.(13d)

Now, by the Cauchy–Schwarz inequality,

(14) ‖x− y‖‖a− b‖ ≥ 〈x− y, a− b〉 ≥ (1 + γα)‖a− b‖2,

which gives ‖x− y‖ ≥ (1 + γα)‖a− b‖ while noting that this is trivial when a = b.
(ii) This is a direct consequence of (i).

Proposition 3.4 (single-valuedness and full domain). Let A : X ⇒ X be α-
monotone and let γ ∈ R++ such that 1 + γα > 0. Then the following hold:

(i) JγA is single valued.
(ii) dom JγA = X if and only if A is maximally α-monotone.

Proof. (i) This follows from Lemma 3.3(i).
(ii) By Lemma 3.2(i), A′ := A−α Id is monotone. Noting that (βT )−1 = T−1◦ 1β Id

for any operator T and any β ∈ Rr {0}, we have

JγA = (Id +γA)−1 =
(
(1 + γα) Id +γ(A− α Id)

)−1
(15a)

=

(
Id +

γ

1 + γα
A′
)−1

◦
(

1

1 + γα
Id

)
(15b)

= J γ
1+γαA

′ ◦
(

1

1 + γα
Id

)
.(15c)

It follows that

dom JγA = X ⇐⇒ dom J γ
1+γαA

′ = X(16a)

⇐⇒ A′ is maximally monotone (by Fact 2.1)(16b)

⇐⇒ A is maximally α-monotone (by Lemma 3.2(ii)).(16c)

The proof is complete.

Next, we further characterize the maximal α-monotonicity.

Proposition 3.5 (maximal α-monotonicity). The following statements hold:
(i) Let A : X ⇒ X and α ∈ R+. Then A is maximally α-monotone if and only

if A is α-monotone and maximally monotone.
(ii) Let A : X → X and α ∈ R. Then A is maximally α-monotone if A is α-

monotone and continuous with full domain.

Proof. (i) Since α ≥ 0, it follows from Fact 2.1 that A is α-monotone and maxi-
mally monotone if and only if A is α-monotone and dom JA = X, which, by Proposi-
tion 3.4(ii), happen if and only if A is maximally α-monotone.

(ii) Set A′ := A− α Id. Then A′ is monotone (due to Lemma 3.2(i)) and contin-
uous with full domain. By [2, Corollary 20.28], A′ is maximally monotone, and by
Lemma 3.2(ii), A is maximally α-monotone.
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In fact, an anonymous colleague has led us to the simple but important equivalence
in Proposition 3.5(i). From now on, we will simply use maximal α-monotonicity
whenever convenient.

Remark 3.6 (Lipschitz α-monotone operators). Suppose that A is Lipschitz con-
tinuous with constant `. Then A is single valued and

(17) ∀x, y ∈ domA, | 〈x− y,Ax−Ay〉 | ≤ ‖x− y‖ · ‖Ax−Ay‖ ≤ `‖x− y‖2,

which yields

(18) ∀x, y ∈ domA, −`‖x− y‖2 ≤ 〈x− y,Ax−Ay〉 ≤ `‖x− y‖2.

We immediately deduce that A is (−`)-monotone. Now suppose, in addition, that A
is α-monotone. On the one hand, we can always assume without loss of generality
that α ≥ −`. On the other hand, it follows from the α-monotonicity and (18) that
α ≤ ` as soon as domA has more than one element. Therefore, unless otherwise
stated, whenever A is both α-monotone and Lipschitz continuous with constant `, we
assume that |α| ≤ `.

As seen in the following lemma, when an α-monotone operator is also Lipschitz
continuous, its resolvent possesses metric properties stronger than Lemma 3.3. Some
of these properties were also observed in [26, 32] for the α ≥ 0 case.

Lemma 3.7 (resolvents of Lipschitz α-monotone operators). Let A : X → X be
Lipschitz continuous with constant ` and let γ ∈ R++. Then the following hold:

(i) For all (x, a), (y, b) ∈ gra JγA,

‖a− b‖ ≥ 1

1 + γ`
‖x− y‖,(19a)

〈x− y, a− b〉 ≥ 1

2
‖x− y‖2 +

1

2
(1− γ2`2)‖a− b‖2,(19b)

and if γ` ≤ 1, then

(20) 〈x− y, a− b〉 ≥ 1

1 + γ`
‖x− y‖2.

(ii) If A is α-monotone with 1 + γα > 0, then, for all x, y ∈ dom JγA,

(21) 〈x− y, JγAx− JγAy〉 ≥ (1 + γα)αJ‖x− y‖2,

where

(22a) αJ :=


1

1 + 2γα+ γ2`2
if γ` ≥ 1,

1

(1 + γα)(1 + γ`)
if γ` ≤ 1;

and if additionally A satisfies (8) with equality, then

(22b) αJ :=
1

1 + 2γα+ γ2`2
.
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Proof. (i) Let (x, a), (y, b) ∈ gra JγA. Then x = a + γAa and y = b + γAb. By
Lipschitz continuity, ‖Aa−Ab‖ ≤ `‖a− b‖. It follows that

(23) ‖x− y‖ ≤ ‖a− b‖+ γ‖Aa−Ab‖ ≤ (1 + γ`)‖a− b‖

and that

2 〈x− y, a− b〉 = ‖x− y‖2 + ‖a− b‖2 − ‖(x− a)− (y − b)‖2(24a)

= ‖x− y‖2 + ‖a− b‖2 − γ2‖Aa−Ab‖2(24b)

≥ ‖x− y‖2 + (1− γ2`2)‖a− b‖2.(24c)

If γ` ≤ 1, then combining the above inequalities yields

(25) 2 〈x− y, a− b〉 ≥ ‖x− y‖2 +
1− γ2`2

(1 + γ`)2
‖x− y‖2 =

2

1 + γ`
‖x− y‖2,

and we get the claim.
(ii) We first note that JγA is single valued due to Proposition 3.4(i). Then (24)

reads as

(26) 2 〈x− y, JγAx− JγAy〉 ≥ ‖x− y‖2 + (1− γ2`2)‖JγAx− JγAy‖2.

We claim that if γ` ≥ 1 or A satisfies (8) with equality, then

(27) 2 〈x− y, JγAx− JγAy〉 ≥ ‖x− y‖2 +
1− γ2`2

1 + γα
〈x− y, JγAx− JγAy〉 .

Indeed, the former case implies 1−γ2`2 ≤ 0 and, by combining (26) with Lemma 3.3(ii)
and noting that 1 + γα > 0, we get (27). In the latter case, Lemma 3.3(ii) reduces to

(28) 〈x− y, JγAx− JγAy〉 = (1 + γα)‖JγAx− JγAy‖2.

Substituting this into (26), we also obtain (27).
Now, in view of Remark 3.6, 1 + 2γα+ γ2`2 ≥ 1 + 2γα+ γ2α2 = (1 + γα)2 > 0.

It thus follows from (27) that

(29) 〈x− y, JγAx− JγAy〉 ≥
1 + γα

1 + 2γα+ γ2`2
‖x− y‖2.

Finally, if γ` ≤ 1, then, by (i),

(30) 〈x− y, JγAx− JγAy〉 ≥
1

1 + γ`
‖x− y‖2,

and the conclusion follows.

Remark 3.8 (a case of equality in (8)). At first glance, an operator that satisfies
(8) with equality seems unusual. Nevertheless, it turns out that there is a special
operator class that falls into this case. Indeed, let S : X → X be a linear skew
operator, i.e., S∗ = −S. Define A := S + α Id with α ∈ R. Then, for all x, y ∈
domA = domS, we have that

(31) 〈x− y,Ax−Ay〉 = 〈x− y, S(x− y)〉+ α‖x− y‖2 = α‖x− y‖2,

i.e., A satisfies (8) with equality.
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Next, we turn our attention to the relaxed resolvent of an α-monotone operator,
which is a special case of the linear combination of the resolvent and the identity.
We will establish two types of metric estimations for relaxed resolvents, one for gen-
eral α-monotone operators and one for Lipschitz α-monotone operators. In fact, the
latter case possesses some Lipschitz estimations, which help when proving the linear
convergence in the next section.

Proposition 3.9 (linear combinations of resolvents and the identity).
Let A : X ⇒ X be α-monotone and let γ ∈ R++. Set J := JγA and define Q :=
ν Id +λJ with ν, λ ∈ R.

(i) Suppose that J is single valued and νλ ≤ 0. Then, for all x, y ∈ dom J ,

(32) ‖Qx−Qy‖2 ≤ ν2‖x− y‖2 + λ
(
2ν(1 + γα) + λ

)
‖Jx− Jy‖2.

(ii) Suppose that A is Lipschitz continuous with constant `, 1 + γα > 0, and
λ(2ν(1 + γα) + λ) ≤ 0. Then Q is Lipschitz continuous with constant

(33) ρ :=
√
ν2 + λ

(
2ν(1 + γα) + λ

)
αJ ,

where αJ is defined as (22). If additionally λ(ν + λ
1−γ2`2 ) ≥ 0 whenever

γ` < 1, then the Lipschitz constant (33) can be improved to

(34) ρ :=

√
ν2 +

λ
(
2ν(1 + γα) + λ

)
1 + 2γα+ γ2`2

≤ ρ.

Proof. Let x, y ∈ dom J . By the definition of Q,

‖Qx−Qy‖2 = ‖ν(x− y) + λ(Jx− Jy)‖2(35a)

= ν2‖x− y‖2 + 2νλ 〈x− y, Jx− Jy〉+ λ2‖Jx− Jy‖2.(35b)

(i) Since νλ ≤ 0, combining (35) with Lemma 3.3(ii) yields

‖Qx−Qy‖2 ≤ ν2‖x− y‖2 + 2νλ(1 + γα)‖Jx− Jy‖2 + λ2‖Jx− Jy‖2(36a)

= ν2‖x− y‖2 + λ
(
2ν(1 + γα) + λ

)
‖Jx− Jy‖2.(36b)

(ii) First, according to Proposition 3.4(i), J is single valued, and so is Q. Next,
using (35), Lemma 3.3(ii), and Lemma 3.7(ii) and noting that λ(2ν(1 + γα) +λ) ≤ 0,
we have

‖Qx−Qy‖2 ≤ ν2‖x− y‖2 + 2νλ 〈x− y, Jx− Jy〉+
λ2

1 + γα
〈x− y, Jx− Jy〉(37a)

= ν2‖x− y‖2 +
λ
(
2ν(1 + γα) + λ

)
1 + γα

〈x− y, Jx− Jy〉(37b)

≤ ν2‖x− y‖2 + λ
(
2ν(1 + γα) + λ

)
αJ‖x− y‖2 = ρ2‖x− y‖2,(37c)

which implies that Q is Lipschitz continuous with constant ρ.
For the last statement, we show that αJ in formula (33) can be replaced by

(38) αJ :=
1

1 + 2γα+ γ2`2
.



ADAPTIVE DOUGLAS–RACHFORD SPLITTING ALGORITHM 2705

If 〈x− y, Jx− Jy〉 ≥ (1 + γα)αJ‖x − y‖2, then (37) also holds with αJ replaced by
αJ . Now, assume that 〈x− y, Jx− Jy〉 < (1 + γα)αJ‖x− y‖2. By Lemma 3.7(ii), we
must have γ` < 1, and then, by assumption, λ(ν + λ

1−γ2`2 ) ≥ 0. It now follows from

(35) and (19b) that

‖Qx−Qy‖2 ≤ ν2‖x− y‖2 + 2νλ 〈x− y, Jx− Jy〉

+
λ2

1− γ2`2
(2 〈x− y, Jx− Jy〉 − ‖x− y‖2)(39a)

=
(
ν2 − λ2

1− γ2`2
)
‖x− y‖2 + 2λ

(
ν +

λ

1− γ2`2
)
〈x− y, Jx− Jy〉(39b)

≤
(
ν2 − λ2

1− γ2`2
)
‖x− y‖2 + 2λ

(
ν +

λ

1− γ2`2
)

(1 + γα)αJ‖x− y‖2(39c)

=
(
ν2 + λ

(
2ν(1 + γα) + λ

)
αJ

)
‖x− y‖2 = ρ2‖x− y‖2.(39d)

Finally, we will prove αJ ≥ αJ , which implies ρ ≤ ρ, i.e., the Lipschitz constant is
indeed improved. From the definition of αJ , it suffices to consider the case in which
αJ = 1/((1 + γα)(1 + γ`)). Then γ` ≤ 1. Since |α| ≤ ` (see Remark 3.6), it holds
that

0 < (1 + γα)2 ≤ 1 + 2γα+ γ2`2 ≤ 1 + 2γα+ γ2`2 + (γ`− γα)− γ`(γ`− γα)(40a)

= 1 + γα+ γ`+ (γα)(γ`)(40b)

= (1 + γα)(1 + γ`),(40c)

and so

(41) αJ =
1

1 + 2γα+ γ2`2
≥ αJ =

1

(1 + γα)(1 + γ`)
.

The proof is complete.

Remark 3.10. In the setting of Proposition 3.9(ii), if νλ ≤ 0, then one can also
obtain a Lipschitz constant of Q via Proposition 3.9(i) and (19a) in Lemma 3.7(i), in
particular,

(42) ‖Qx−Qy‖2 ≤

(
ν2 +

λ
(
2ν(1 + γα) + λ

)
(1 + γ`)2

)
‖x− y‖2,

i.e., Q is Lipschitz continuous with constant

(43) ρ′ :=

√
ν2 +

λ
(
2ν(1 + γα) + λ

)
(1 + γ`)2

.

However, ρ′ is actually larger than ρ in (33), which means that ρ is a better Lipschitz
constant than ρ′. To see this, since λ(2ν(1 +γα) +λ) ≤ 0, we only need to check that
1/(1 + γ`)2 ≤ αJ . Noting from Remark 3.6 that α ≤ `, we have 0 < 1 + γα ≤ 1 + γ`
and 0 < 1 + 2γα+ γ2`2 ≤ (1 + γ`)2. Therefore,

(44)
1

(1 + γ`)2
≤ min

{
1

(1 + γα)(1 + γ`)
,

1

1 + 2γα+ γ2`2

}
≤ αJ .
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Corollary 3.11 (relaxed resolvents of α-monotone operators). Let A : X ⇒ X
be α-monotone and let γ ∈ R++. Suppose that J := JγA is single valued and define
R := (1− λ) Id +λJ with λ ∈ R+, and Q := R + ε Id with ε ∈ R. Then the following
hold:

(i) If λ ≥ 1, then, for all x, y ∈ dom J ,

(45) ‖Rx−Ry‖2 ≤ (λ− 1)2‖x− y‖2 − λ
(
(λ− 1)(2 + 2γα)− λ

)
‖Jx− Jy‖2.

(ii) If ε ≤ λ− 1, then, for all x, y ∈ dom J ,

‖Qx−Qy‖2 ≤ (λ− 1− ε)2‖x− y‖2

− λ
(
(λ− 1)(2 + 2γα)− λ− 2ε(1 + γα)

)
‖Jx− Jy‖2.(46)

Consequently, if additionally (λ− 1)(2 + 2γα)− λ− 2ε(1 + γα) ≥ 0, then Q
is Lipschitz continuous with constant (λ− 1− ε).

Proof. Because (i) is a consequence of (ii) with ε = 0, it suffices to prove only
the latter. To this end, noting that Q = R + ε Id = (1 − λ + ε) Id +λJ and using
Proposition 3.9(i) with ν = 1− λ+ ε ≤ 0, we have that

‖Qx−Qy‖2 ≤ (1− λ+ ε)2‖x− y‖2(47a)

+ λ (2(1− λ+ ε)(1 + γα) + λ) ‖Jx− Jy‖2

= (λ− 1− ε)2‖x− y‖2(47b)

− λ
(
(λ− 1)(2 + 2γα)− λ− 2ε(1 + γα)

)
‖Jx− Jy‖2,

which proves (ii).

Corollary 3.12 (relaxed resolvents of Lipschitz α-monotone operators). Let
A : X → X be α-monotone and Lipschitz continuous with constant `. Also let γ ∈ R++

and λ ∈ R++ be such that

(48) 1 + γα > 0 and λ(1 + 2γα)− 2(1 + γα) ≥ 0.

Define J := JγA, R := (1 − λ) Id +λJ , and Q := Id−εR with ε ∈ R+. Then the
following hold:

(i) R is Lipschitz continuous with constant

(49)

√
(λ− 1)2 −

λ
(
(λ− 1)(2 + 2γα)− λ

)
1 + 2γα+ γ2`2

.

(ii) Q is Lipschitz continuous with constant

(50)

√
(1 + ε(λ− 1))2 − ελ

[
2(1 + γα) + ε

(
λ(1 + 2γα)− 2(1 + γα)

)]
αJ ,

where αJ is defined as (22).

Proof. (i) We observe that R = ν Id +λJ with ν := 1− λ, that

(51) λ(2ν(1 + γα) + λ) = −λ
(
λ(1 + 2γα)− 2(1 + γα)

)
≤ 0,

and that, whenever γ` < 1,

(52) ν +
λ

1− γ2`2
= (1− λ) +

λ

1− γ2`2
> 1− λ+ λ = 1 > 0.
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Applying Proposition 3.9(ii) to R = ν Id +λ Id implies that R is Lipschitz continuous
with constant

(53)

√
(1− λ)2 +

λ
(
2(1− λ)(1 + γα) + λ

)
1 + 2γα+ γ2`2

,

which gives the claim.
(ii) Using the first part of Proposition 3.9(ii) and writing Q = ν̃ Id +λ̃J with

ν̃ := 1 + ε(λ− 1) and λ̃ := −ελ, it suffices to check that

(54) λ̃(2ν̃(1 + γα) + λ̃) = (−ελ)
(
2(1 + ε(λ− 1))(1 + γα) + (−ελ)

)
≤ 0.

Indeed, we have that ε ≥ 0, λ > 0, and

2(1 + ε(λ− 1))(1 + γα)− ελ = 2(1 + γα) + ε
(
2(λ− 1)(1 + γα)− λ

)
(55a)

= 2(1 + γα) + ε(λ(1 + 2γα)− 2(1 + γα)) > 0(55b)

by (48). So (54) holds and the conclusion follows.

4. Adaptive Douglas–Rachford algorithm. In this section, A,B : X ⇒ X,
(γ, δ, λ, µ) ∈ R4

++, and κ ∈ ]0, 1[. We define

J1 := JγA = (Id +γA)−1, R1 := JλγA = (1− λ) Id +λJ1,(56a)

J2 := JδB = (Id +δB)−1, R2 := JµδB = (1− µ) Id +µJ2(56b)

and consider the adaptive DR operator defined by

T := (1− κ) Id +κR2R1.(56c)

For convenience of notation, we already drop the parameters λ, µ, κ and A, B as-
sociated with the operators J1, R1, J2, R2, and T . When (λ, µ, κ) = (2, 2, 1/2), the
operator T in (56c) reduces to the classical DR operator [22, 30]. In fact, formulation
(56) was previously used in [17, 18] for feasibility problems, which allow for eliminat-
ing γ and δ while choosing the parameters λ and µ independently. However, such
an advantage no longer exists for the case of general operators. In other words, all
parameters γ, δ, λ, and µ must satisfy a certain set of requirements simultaneously,
as we will see shortly.

The adaptive DR operator is indeed motivated by the problem of finding a zero
of the sum of two operators, that is,

(57) find x ∈ X such that 0 ∈ Ax+Bx.

We also denote by

(58) zer(A+B) := (A+B)−1(0) = {x ∈ X | 0 ∈ Ax+Bx}

the set of solutions of problem (57). Given a starting point x0 ∈ X, the adaptive DR
algorithm generates a sequence (xn)n∈N, also called a DR sequence, by

(59) ∀n ∈ N, xn+1 ∈ Txn.

Then, we expect the DR sequence (xn)n∈N to converge to some point x ∈ FixT such
that J1x contains a solution to the original problem (57). For this purpose, we will
require that

(60) (λ− 1)(µ− 1) = 1 and δ = (λ− 1)γ,
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which are also equivalent to λ = µ/(µ− 1) and γ = (µ− 1)δ, respectively. The next
lemma shows the necessity of (60).

Lemma 4.1 (fixed points of adaptive DR operator). The following statements
hold:

(i) Id−T = κ(Id−R2R1).
(ii) Suppose that (λ− 1)(µ− 1) = 1. Then

(61) ∀x ∈ domT, (Id−T )x = {κµ (a− J2 ((1− λ)x+ λa)) | a ∈ J1x}.

Consequently, if J1 is single valued, then Id−T = κµ(J1 − J2R1).
(iii) Suppose that (60) holds. Then FixT 6= ∅ if and only if zer(A + B) 6= ∅.

Moreover, if J1 is single valued, then

(62) J1(FixT ) = zer(A+B).

Proof. (i) This is clear from the definition of T .
(ii) Let x ∈ domT . Noting that (λ− 1)(µ− 1) = 1 also implies λ(µ− 1) = µ, we

have

(Id−R2R1)x = {x−R2

(
(1− λ)x+ λa

)
| a ∈ J1x}

(63a)

= {x− (1− µ)
(
(1− λ)x+ λa

)
− µJ2

(
(1− λ)x+ λa

)
| a ∈ J1x}(63b)

= {µ (a− J2 ((1− λ)x+ λa)) | a ∈ J1x}.(63c)

This together with (i) proves (61), from which the remaining conclusion follows.
(iii) We derive from the assumption and (ii) that

x ∈ FixT ⇐⇒ 0 ∈ (Id−T )x(64a)

⇐⇒ ∃a ∈ J1x, a ∈ J2
(
(1− λ)x+ λa

)
(64b)

⇐⇒ ∃a ∈ J1x, (1− λ)(x− a) ∈ δBa(64c)

⇐⇒ ∃a ∈ X, x− a ∈ γAa and −(x− a) ∈ γBa(64d)

⇐⇒ ∃a ∈ J1x, 0 ∈ γAa+ γBa(64e)

⇐⇒ ∃a ∈ J1x ∩ zer(A+B),(64f)

which completes the proof.

As shown in Lemma 4.1, a solution of (57) can be found by means of fixed points
of the adaptive DR operator. Therefore, our analysis will mainly revolve around the
convergence to the fixed points under the condition (60).

4.1. Convergence via Fejér monotonicity. Recall that a sequence (xn)n∈N
is said to be Fejér monotone with respect to a nonempty subset of C of X if

(65) ∀c ∈ C, ∀n ∈ N, ‖xn+1 − c‖ ≤ ‖xn − c‖.

The use of Fejér monotonicity is quite common in the convergence theory of monotone
operators. In the following abstract convergence result, our analysis relies on the Fejér
monotonicity of DR sequences generated by the adaptive DR operator T with respect
to FixT and does not require the nonexpansiveness of R2R1.
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Theorem 4.2 (abstract convergence). Let (ω1, ω2, ω3) ∈ R3 such that

either
{
ω2 = ω3 = 0 and ω1 > 0

}
(66a)

or
{
ω2 + ω3 > 0 and ω1 +

ω2ω3

κ2µ2(ω2 + ω3)
> 0
}
.(66b)

Suppose that (λ − 1)(µ − 1) = 1, that J1 and J2 are single valued, that FixT 6= ∅,
and that, for all x ∈ domT , y ∈ FixT ,

‖Tx− y‖2 ≤ ‖x− y‖2 − ω1‖(Id−T )x‖2

− ω2‖J1x− J1y‖2 − ω3‖J2R1x− J2R1y‖2.(67)

Let (xn)n∈N ⊂ domT be a DR sequence generated by T . Then (xn)n∈N converges
weakly to a point x ∈ FixT . Furthermore, the following hold:

(i) If ω2 + ω3 > 0, then the shadow sequences (J1xn)n∈N and (J2R1xn)n∈N con-
verge strongly to J1x and J1(FixT ) = J2R1(FixT ) = {J1x}.

(ii) If T is nonexpansive, then the rate of asymptotic regularity of T is o(1/
√
n),

i.e., ‖(Id−T )xn‖ = o(1/
√
n) as n→ +∞.

(iii) If, for all x, y ∈ domT ,

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ω1‖(Id−T )x− (Id−T )y‖2

− ω2‖J1x− J1y‖2 − ω3‖J2R1x− J2R1y‖2,(68)

then (67) holds for all x ∈ domT , y ∈ FixT , and T is nonexpansive.

Proof. Define

(69) ω′2 :=

{
ω2ω3

ω2+ω3
if ω2 + ω3 > 0,

0 if ω2 = ω3 = 0
and ω′3 :=

{
1

ω2+ω3
if ω2 + ω3 > 0,

0 if ω2 = ω3 = 0.

Then

(70) ω1 +
ω′2
κ2µ2

> 0 and ω′3 ≥ 0.

For all x, y ∈ domT , we derive from (7) and Lemma 4.1(ii) that

ω2‖J1x− J1y‖2 + ω3‖J2R1x− J2R1y‖2(71a)

= ω′2‖(J1 − J2R1)x− (J1 − J2R1)y‖2 + ω′3‖ω2

(
J1x− J1y

)
(71b)

+ ω3

(
J2R1x− J2R1y

)
‖2

=
ω′2
κ2µ2

‖(Id−T )x− (Id−T )y‖2 + ω′3‖ω2

(
J1x− J1y

)
(71c)

+ ω3

(
J2R1x− J2R1y

)
‖2.

Combining with the assumption on T implies that, for all x ∈ domT , y ∈ FixT ,

‖Tx− y‖2 ≤ ‖x− y‖2 −
(
ω1 +

ω′2
κ2µ2

)
‖(Id−T )x‖2

− ω′3‖ω2

(
J1x− J1y

)
+ ω3

(
J2R1x− J2R1y

)
‖2.(72)
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Therefore, for all n ∈ N and all y ∈ FixT ,

‖xn+1 − y‖2 ≤ ‖xn − y‖2 −
(
ω1 +

ω′2
κ2µ2

)
‖(Id−T )xn‖2

− ω′3‖ω2

(
J1xn − J1y

)
+ ω3

(
J2R1xn − J2R1y

)
‖2.(73)

We deduce that (xn)n∈N is Fejér monotone with respect to FixT and hence bounded.
By the telescoping technique, for all y ∈ FixT ,

(74)
(
ω1 +

ω′2
κ2µ2

) +∞∑
n=0

‖(Id−T )xn‖2

+ ω′3

+∞∑
n=0

‖ω2

(
J1xn − J1y

)
+ ω3

(
J2R1xn − J2R1y

)
‖2

≤ ‖x0 − y‖2 < +∞.

Since ω1 +
ω′

2

κ2µ2 > 0, it follows that

(75) (Id−T )xn → 0 as n→ +∞.

Now let x∗ be a weak cluster point of (xn)n∈N. Then there exists a subsequence
(xkn)n∈N of (xn)n∈N such that xkn ⇀ x∗. By (75), (Id−T )xkn → 0, and by [2,
Corollary 4.28], x∗ ∈ FixT . In turn, [2, Theorem 5.5] implies that (xn)n∈N converges
weakly to a point x ∈ FixT .

(i) If ω2 + ω3 > 0, then ω′3 = 1/(ω2 + ω3) > 0 and, by (74), for all y ∈ FixT ,

(76) ω2

(
J1xn − J1y

)
+ ω3

(
J2R1xn − J2R1y

)
→ 0.

Together with(
J1xn − J1y

)
−
(
J2R1xn − J2R1y

)
=

1

κµ

(
(Id−T )xn − (Id−T )y

)
(77)

=
1

κµ
(Id−T )xn → 0,

we obtain

(78) J1xn → J1y and J2R1xn → J2R1y = J1y,

which also means that J1(FixT ) = J2R1(FixT ) = {J1x}.
(ii) By the nonexpansiveness of T ,

(79) ∀n ∈ N, ‖(Id−T )xn+1‖ = ‖Txn − Txn+1‖ ≤ ‖xn − xn+1‖ = ‖(Id−T )xn‖.

Combining with (74), we obtain that

(80)
n

2
‖(Id−T )xn‖2 ≤

n∑
k=bn/2c

‖(Id−T )xk‖2 → 0 as n→ +∞,

where bn/2c is the largest integer not exceeding n/2. The conclusion then follows.
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(iii) Assume that (68) holds for all x, y ∈ domT . Then (67) holds for all x ∈
domT , y ∈ FixT since (Id−T )y = 0 in this case. Next, it follows from (68) and (71)
that, for all x, y ∈ domT ,

‖Tx− Ty‖2 ≤ ‖x− y‖2 −
(
ω1 +

ω′2
κ2µ2

)
‖(Id−T )x− (Id−T )y‖2

− ω′3‖ω2

(
J1x− J1y

)
+ ω3

(
J2R1x− J2R1y

)
‖2(81a)

≤ ‖x− y‖2,(81b)

which completes the proof.

The following result provides a quantitative measurement for the adaptive DR
operator, which is important for our analysis.

Proposition 4.3 (metric inequality for adaptive DR operator). Suppose that A
and B are respectively α- and β-monotone, that (60) holds and min{λ, µ} > 1, and
that J1 and J2 are single valued. Then for all x, y ∈ domT ,

‖Tx− Ty‖2 ≤ ‖x− y‖2 − 1− κ
κ
‖(Id−T )x− (Id−T )y‖2

− κµ(2 + 2γα− µ)‖J1x− J1y‖2

− κµ
(
µ− (2− 2γβ)

)
‖J2R1x− J2R1y‖2.(82)

Proof. Let x, y ∈ domR2R1 = domT . We observe from (6) and Lemma 4.1(i)
that

‖Tx− Ty‖2 = (1− κ)‖x− y‖2 + κ‖R2R1x−R2R1y‖2(83a)

− κ(1− κ)‖(Id−R2R1)x− (Id−R2R1)y‖2

= (1− κ)‖x− y‖2 − 1− κ
κ
‖(Id−T )x− (Id−T )y‖2(83b)

+ κ‖R2R1x−R2R1y‖2.

Next, applying Corollary 3.11(i) first to R2 and then to R1 yields

‖R2R1x−R2R1y‖2 ≤ (µ− 1)2(λ− 1)2‖x− y‖2(84a)

− (µ− 1)2λ
(

(λ− 1)(2 + 2γα)− λ
)
‖J1x− J1y‖2(84b)

− µ
(

(µ− 1)(2 + 2δβ)− µ
)
‖J2R1x− J2R1y‖2(84c)

=: η0‖x− y‖2 − η1‖J1x− J1y‖2 − η2‖J2R1x− J2R1y‖2.(84d)

Now, it follows from (60) that

η0 =
(
(µ− 1)(λ− 1)

)2
= 1,(85a)

η1 = (µ− 1)2(λ− 1)2
λ

λ− 1

(
(2 + 2γα)− λ

λ− 1

)
= µ

(
2 + 2γα− µ

)
,(85b)

η2 = µ
(

2(µ− 1) + 2γβ − µ
)

= µ
(
µ− (2− 2γβ)

)
.(85c)

Altogether, we get the conclusion.
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So far in this section, we have often assumed single-valuedness of the resolvents
J1 and J2, which leads to the same property for the adaptive DR operator T . Indeed,
since either A or B may not necessarily be monotone, the single-valuedness is not
guaranteed. Nevertheless, the choice of parameters can help clearing up the issue,
as seen in the following lemma, which is based on Proposition 3.4. We will further
establish that, given suitable α- and β-monotone operators, it is always possible to
choose parameters (γ, δ, λ, µ) ∈ R2

++ × ]1,+∞[
2

so that all objectives are met: the
adaptive DR operator enjoys the single-valuedness and full domain properties; (60) is
satisfied; and every DR sequence converges to a fixed point via which problem (57) is
solved.

Lemma 4.4 (single-valuedness and full domain of adaptive DR operator). Sup-
pose that A and B are maximally α- and β-monotone with α + β ≥ 0. Then there
exists (γ, δ, λ, µ) ∈ R2

++ × ]1,+∞[
2

such that

1 + 2γα > 0,(86a)

µ ∈ [2− 2γβ, 2 + 2γα] ,(86b)

(λ− 1)(µ− 1) = 1, and δ = (λ− 1)γ.(86c)

Moreover, (86) implies that min{1+γα, 1+δβ} > 0 and that J1, J2, and T are single
valued and have full domain.

Proof. To show the existence, we first take γ > 0 such that 1/γ > −2α. Then
1 + 2γα > 0 and 2 + 2γα = 1 + (1 + 2γα) > 1. Using α+ β ≥ 0, we derive that

(87) 2 + 2γα = 2γ(α+ β) + (2− 2γβ) ≥ 2− 2γβ.

Hence, we can always choose µ > 1 satisfying (86b). Next, with such µ, we define
λ := µ/(µ− 1) = 1 + 1/(µ− 1) > 1 and δ := (λ− 1)γ. Then (86c) is clearly satisfied.

Now, take any (γ, δ, λ, µ) satisfying (86). We have

(88) 1 + δβ = (λ− 1)(µ− 1) + (λ− 1)γβ =
1

2
(λ− 1)(µ+ µ− (2− 2γβ)) > 0.

Thus, min{1 + γα, 1 + δβ} > 0. The remaining conclusion follows from Proposi-
tion 3.4.

We are now ready to state our convergence results for the adaptive DR algorithm.

Theorem 4.5 (adaptive DR algorithm for α- and β-monotone operators). Sup-
pose that A and B are respectively maximally α- and β-monotone with zer(A+B) 6= ∅,
and that one of the following holds.

(i) Adaptive DR algorithm: α + β ≥ 0 and (γ, δ, λ, µ) ∈ R2
++ × ]1,+∞[

2
satis-

fies (86).
(ii) Classical DR algorithm: λ = µ = 2, γ = δ ∈ R++, and

either α = β = 0(89a)

or α+ β > 0 and 1 + γ
αβ

α+ β
> κ.(89b)

Then every DR sequence (xn)n∈N generated by T converges weakly to a point x ∈ FixT
with J1x ∈ zer(A+B) and the rate of asymptotic regularity of T is o(1/

√
n). Moreover,

if α+β > 0, then the shadow sequences (J1xn)n∈N and (J2R1xn)n∈N converge strongly
to J1x and zer(A+B) = {J1x}.
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Proof. We first observe that if (i) holds, then, by Lemma 4.4,

(90) min{1 + γα, 1 + δβ} > 0.

Let us show that (90) is also satisfied when (ii) holds. Indeed, if α = β = 0, then (90)
is obvious. Otherwise, it follows from α+ β > 0 and 1 + γ αβ

α+β > κ > 0 that

(91) 1 + γα =

(
1 + γ

αβ

α+ β

)
+ γ

α2

α+ β
> 0

and that

(92) 1 + δβ = 1 + γβ =

(
1 + γ

αβ

α+ β

)
+ γ

β2

α+ β
> 0.

Thus, (90) holds for all cases.
From (90) and Proposition 3.4, we have that J1 and J2 are single valued and have

full domain, so does T . Now by Proposition 4.3, for all x, y ∈ X,

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ω1‖(Id−T )x− (Id−T )y‖2

− ω2‖J1x− J1y‖2 − ω3‖J2R1x− J2R1y‖2(93)

with ω1 := (1 − κ)/κ > 0, ω2 := κµ(2 + 2γα − µ), ω3 := κµ
(
µ − (2 − 2γβ)

)
. Next,

since zer(A + B) 6= ∅, Lemma 4.1(iii) yields FixT 6= ∅. In view of Theorem 4.2, it
suffices to verify assumption (66). If (i) holds, then, by (86), ω2, ω3 ≥ 0, so (66) is
satisfied; if (ii) holds, then ω2 = 4κγα, ω3 = 4κγβ, and (66) holds due to (89). The
proof is complete.

Remark 4.6 (under- and over-reflecting the resolvents). Let us consider problem
(57) with A and B respectively maximally α- and (−α)-monotone for some α > 0.
Recall that the classical DR algorithm uses the exact reflections of the resolvents (i.e.,
λ = µ = 2) if both operators are monotone. This is not applicable in this situation
since A is strongly monotone while B is weakly monotone. Therefore, in order to
guarantee the convergence, the adaptive DR algorithm requires the choice µ = 2 +
2γα > 2 (Theorem 4.5(i)), and thus λ = µ/(µ−1) = 1+1/(1+2γα) < 2. That means
we must under-reflect (λ < 2) the resolvent of A, the strongly monotone operator, and
over-reflect (µ > 2) the resolvent of B, the weakly monotone one. This phenomenon
is somewhat counterintuitive, since in order to preserve nonexpansiveness, one would
naturally think of doing the opposite, i.e., over-reflecting the resolvent of the strongly
monotone operator and under-reflecting that of the weakly one.

While Theorem 4.5(i) is new, Theorem 4.5(ii) not only unifies and simplifies but
also extends [27, Theorems 4.4 and 4.6] to the context of operators in Hilbert spaces
(here we note that the condition [27, equation (3.4)] implies the second condition in
(89b)). Moreover, the proof for the rate of asymptotic regularity of T in Theorem 4.5,
which follows from Theorem 4.2(ii) and (iii), is simpler than the treatment presented
in [27, Theorems 5.1 and 5.2].

The following result is an immediate corollary of Theorem 4.5, in which we note
that the adaptive DR algorithm reduces to the classical one when choosing µ = 2.

Corollary 4.7 (one monotone and one strongly monotone operator). Let α ∈
R+ and γ ∈ R++. Suppose that A and B are maximally monotone and that either

(i) A is α-monotone and µ ∈ [2, 2 + 2γα], or
(ii) B is α-monotone and µ ∈ [2− 2γα, 2].
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Suppose also that zer(A + B) 6= ∅ and that λ = µ/(µ − 1) and δ = (µ − 1)γ. Then
every DR sequence (xn)n∈N generated by T converges weakly to a point x ∈ FixT with
J1x ∈ zer(A+B) and the rate of asymptotic regularity of T is o(1/

√
n). Moreover, if

α > 0, then the shadow sequences (J1xn)n∈N and (J2R1xn)n∈N converge strongly to
J1x and zer(A+B) = {J1x}.

Proof. By Proposition 3.5(i), we readily have that either A or B is maximally
α-monotone while the other is maximally monotone. Now, apply Theorem 4.5(i) with
(α, β) replaced by (α, 0) or (0, α).

4.2. Linear convergence under Lipschitz assumption. In this section, we
provide linear convergence results for the adaptive DR algorithm for α- and β-mono-
tone operators when, in addition, one operator is Lipschitz continuous. Comparing
with [26, 32], our work indeed gives a new perspective on this topic by using adaptive
parameters. Moreover, we improve the linear convergence rate obtained by [32] for the
classical DR algorithm for a Lipschitz monotone and a strongly monotone operator
(see Remark 4.11).

Recall that a sequence (xn)n∈N converges to x with Q-linear (or simply linear)
rate ρ ∈ [0, 1[ if

(94) ∀n ∈ N, ‖xn+1 − x‖ ≤ ρ‖xn − x‖.

Theorem 4.8 (linear convergence when A is Lipschitz). Suppose that either
(i) A is α-monotone and Lipschitz continuous with constant `, B is maximally

β-monotone, and α+ β > 0; or
(ii) A is Lipschitz continuous with constant `, B is maximally β-monotone with

β > `, and α := −`.
Suppose also that zer(A+B) 6= ∅ and that (γ, δ, λ, µ) ∈ R2

++× ]1,+∞[
2

satisfies (86).
Then T is Lipschitz continuous with constant

(95) ρ := (1−κ)

√(
1 + ε1(λ− 1)

)2 − ϕαJ+κ(1−ε(λ−1))

√
1− µ(2 + 2γα− µ)

1 + 2γα+ γ2`2
< 1,

where

ε :=
µ− (2− 2γβ)

2(1 + δβ)
, ε1 :=

κε

1− κ
,(96a)

ϕ := ε1λ[2(1 + γα) + ε1
(
λ(1 + 2γα)− 2(1 + γα)

)
],(96b)

αJ is as in (22).(96c)

Consequently, every DR sequence (xn)n∈N generated by T converges strongly to the
unique fixed point x of T with linear rate ρ.

Proof. In view of Remark 3.6, assumption (ii) implies assumption (i) because if
A is Lipschitz continuous with constant `, then A is also α-monotone with α := −`.
It thus suffices to assume (i). First, Proposition 3.5(ii) implies that A is maximally
α-monotone. Next, we learn from Lemma 4.4 that

(97) min{1 + γα, 1 + δβ} > 0

and that all operators J1, J2, and T are single valued and have full domain.
By the choice of µ, it holds that 0 < µ− 1 ≤ 1 + 2γα, and so

(98) λ = 1 +
1

µ− 1
≥ 1 +

1

1 + 2γα
=

2(1 + γα)

1 + 2γα
,
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which yields

(99) λ(1 + 2γα)− 2(1 + γα) ≥ 0.

From µ ≥ 2− 2γβ, we have that ε ≥ 0 and ε1 ≥ 0. It follows that ϕ ≥ 0 and that

(100) ϕ = 0 ⇐⇒ ε1 = 0 ⇐⇒ ε = 0 ⇐⇒ µ = 2− 2γβ.

Define Q1 := Id−ε1R1. Using Corollary 3.12 and noting that λ = µ(λ−1), we derive
that R1 is Lipschitz continuous with constant

(101)

√
(λ− 1)2 −

λ
(
(λ− 1)(2 + 2γα)− λ

)
1 + 2γα+ γ2`2

= (λ− 1)

√
1− µ(2 + 2γα− µ)

1 + 2γα+ γ2`2
,

and that Q1 is Lipschitz continuous with constant

(102) ρ1 :=
√

(1 + ε1(λ− 1))2 − ϕαJ ≤ 1 + ε1(λ− 1),

where αJ is defined as in (22). It follows from (100) that the inequality is strict
whenever µ > 2− 2γβ.

Next, define Q2 := R2 + ε Id. Since γ = (µ− 1)δ, we note that

(103) ε =
µ− (2− 2γβ)

2(1 + δβ)
=

(µ− 1)(2 + 2δβ)− µ
2(1 + δβ)

< µ− 1,

which also gives

(104) (µ− 1)(2 + 2δβ)− µ− 2ε(1 + δβ) = 0.

By Corollary 3.11(ii), Q2 is Lipschitz continuous with constant (µ−1−ε). Combining
with the Lipschitz continuity of R1 and noting that (µ− 1)(λ− 1) = 1, we have that
Q2R1 is Lipschitz continuous with constant

ρ2 := (µ− 1− ε)(λ− 1)

√
1− µ(2 + 2γα− µ)

1 + 2γα+ γ2`2
(105a)

= (1− ε(λ− 1))

√
1− µ(2 + 2γα− µ)

1 + 2γα+ γ2`2
(105b)

≤ 1− ε(λ− 1),(105c)

where the inequality is strict whenever µ < 2 + 2γα.
Now, we express

T = (1− κ) Id−(1− κ)ε1R1 + κR2R1 + κεR1(106a)

= (1− κ)(Id−ε1R1) + κ(R2 + ε Id)R1(106b)

= (1− κ)Q1 + κQ2R1.(106c)

We note from α + β > 0 that 2 + 2γα > 2 − 2γβ, so at least one of two inequalities
in (102) and (105) is strict. Therefore, T is Lipschitz continuous with constant

(107) ρ := (1− κ)ρ1 + κρ2 < (1− κ)(1 + ε1(λ− 1)) + κ(1− ε(λ− 1)) = 1,

which completes the proof.
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The following is a direct consequence of Theorem 4.8, which was also proved
in [26].

Corollary 4.9 (see [26, Theorem 6.5]). Suppose that A is α-monotone with
α ∈ R++ and Lipschitz continuous with constant `, that B is maximally monotone,
and that zer(A+B) 6= ∅. Suppose also that λ = µ = 2 and γ = δ ∈ R++. Then T is
Lipschitz continuous with constant

(108) ρ := (1− κ) + κ

√
1− 4γα

1 + 2γα+ γ2`2
< 1.

Proof. Since λ = µ = 2, γ = δ, and α > 0, one can check that (86) holds with
β = 0. Now apply Theorem 4.8 and note that ε = ε1 = 0 in this case.

Next, we present another case of the classical DR algorithm when A is monotone
and B is strongly monotone. We note the exchange of monotonicity assumptions on
A and B in Corollaries 4.9 and 4.10, and that in the latter result, we consider only
the κ = 1/2 case for simplicity.

Corollary 4.10 (linear convergence of the classical DR algorithm). Suppose
that A is monotone and Lipschitz continuous with constant `, that B is maximally
β-monotone with β ∈ R++, and that zer(A + B) 6= ∅. Suppose also that λ = µ = 2,
κ = 1/2, and γ = δ ∈ R++. Then T is Lipschitz continuous with constant
(109)

ρ :=
1

2(1 + γβ)

(√
(1 + 2γβ)2 − 4γβ(1 + γβ) min

{ 1

1 + γ`
,

1

1 + γ2`2

}
+ 1

)
< 1.

Furthermore, if the monotonicity assumption of A is replaced by

(110) ∀x, y ∈ domA, 〈x− y,Ax−Ay〉 = 0,

then the Lipschitz constant of T is improved to

(111) ρ :=
1

2(1 + γβ)

(√
(1 + 2γβ)2 − 4γβ(1 + γβ)

1 + γ2`2
+ 1

)
< 1.

Proof. Since λ = µ = 2, γ = δ > 0, and β > 0, it is clear that (86) is satisfied
with α = 0. Applying Theorem 4.8, we obtain that T is Lipschitz continuous with
constant

(112) ρ :=
1

2

(√
(1 + ε)2 − 4εαJ + 1− ε

)
,

where ε := γβ
1+γβ . Then

ρ =
1

2

(√(1 + 2γβ

1 + γβ

)2
− 4γβ

1 + γβ
αJ +

1

1 + γβ

)
(113a)

=
1

2(1 + γβ)

(√
(1 + 2γβ)2 − 4γβ(1 + γβ)αJ + 1

)
.(113b)
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Now, it follows from (22) that

αJ =


1

1 + γ2`2
if γ` ≥ 1,

1

1 + γ`
if γ` ≤ 1

(114a)

= min

{
1

1 + γ`
,

1

1 + γ2`2

}
,(114b)

which yields (109).
Finally, if A satisfies (110), then, again by (22),

(115) αJ =
1

1 + γ2`2
,

and we get (111).

Remark 4.11 (improved Lipschitz constant for the classical DR operator). For
the classical DR operator (λ = µ = 2 and κ = 1/2), the Lipschitz constant obtained
in Corollary 4.10 is sharper than the one obtained in [32, Theorem 4.4(i)]. Indeed, by
setting γ = δ = 1, the Lipschitz constant of [32, Theorem 4.4(i)] is

r =
1

2(1 + β)

(√
2β2 + 2β + 1 + 2

(
1− 1

(1 + `)2
− 1

1 + `2

)
β(1 + β) + 1

)
(116a)

=
1

2(1 + β)

(√
(1 + 2β)2 − 2β(1 + β)

(
1

(1 + `)2
+

1

1 + `2

)
+ 1

)
,(116b)

while Corollary 4.10 gives the Lipschitz constant

(117) ρ =
1

2(1 + β)

(√
(1 + 2β)2 − 2β(1 + β) min

{
2

1 + `
,

2

1 + `2

}
+ 1

)
.

One can check that

(118) min

{
2

1 + `
,

2

1 + `2

}
>

1

(1 + `)2
+

1

1 + `2
.

Therefore, ρ is strictly less than r.
Regarding the second part of Corollary 4.10, we note that Remark 3.8 provides

a class of operators satisfying (110) and that the Lipschitz constant (111) was shown
to be sharp in [32].

Remark 4.12 (choosing the parameter γ for best Lipschitz constant). When the
Lipschitz constant ` of A and the monotonicity constant β of B are known, in order
to find the best Lipschitz constant for the classical DR operator, one can sketch ρ
in (109) as a function of γ and approximate numerically the value γ that yields the
minimum of ρ. It is, however, not clear how to obtain an explicit formula for the best
such value. Indeed, a similar situation was also mentioned in [32, Remark 5.4].

As a counterpart of Theorem 4.8, we next consider the adaptive DR algorithm
for the case in which B is Lipschitz continuous. For this case, however, we need an
additional assumption that B is a linear operator, which implies that J2 and R2 are
also linear. To make the argument more symmetric, we will prove an equivalent form
of (86).
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Lemma 4.13. Suppose that (γ, δ, λ, µ) ∈ R2
++× ]1,+∞[

2
. Then (86) is equivalent

to

1 + 2δβ > 0,(119a)

λ ∈ [2− 2δα, 2 + 2δβ] ,(119b)

(µ− 1)(λ− 1) = 1, and γ = (µ− 1)δ.(119c)

Proof. It suffices to prove one implication that (86) implies (119) because the
converse is very similar. First, it is clear that (119c) is equivalent to (86c). For the
reminder of the proof, we will use λ > 1, (λ − 1)(µ − 1) = 1, and δ = (λ − 1)γ.
By (86b),

λ− (2− 2δα) = λ− 1− (λ− 1)(µ− 1) + 2(λ− 1)γα(120a)

= (λ− 1)(2 + 2γα− µ) ≥ 0,

2 + 2δβ − λ = (λ− 1)(µ− 1) + 2(λ− 1)γβ + 1− λ(120b)

= (λ− 1)
(
µ− (2− 2γβ)

)
≥ 0.

Thus, 1 + 2δβ = (2 + 2δβ − λ) + (λ− 1) > 0, which completes (119).

Theorem 4.14 (linear convergence when B is Lipschitz). Suppose that either
(i) A is maximally α-monotone, B is linear, β-monotone, and Lipschitz contin-

uous with constant `, and α+ β > 0; or
(ii) A is maximally α-monotone, B is linear and Lipschitz continuous with con-

stant ` < α, and β := −`.
Suppose also that zer(A+B) 6= ∅ and that (γ, δ, λ, µ) ∈ R2

++× ]1,+∞[
2

satisfies (86).
Then T is Lipschitz continuous with constant
(121)

ρ := (1− κ)

√(
1 + ε2(µ− 1)

)2 − ϕαJ + κ(1− ε(µ− 1))

√
1− λ(2 + 2δβ − λ)

1 + 2δβ + δ2`2
< 1,

where

ε :=
λ− (2− 2δα)

2(1 + γα)
, ε2 :=

κε

1− κ
,(122a)

ϕ := ε1µ[2(1 + δβ) + ε1
(
µ(1 + 2δβ)− 2(1 + δβ)

)
],(122b)

αJ is as in (22) with (α, γ) replaced by (β, δ).(122c)

Consequently, every DR sequence (xn)n∈N generated by T converges strongly to the
unique fixed point x of T with linear rate ρ.

Proof. For the same reason as in the proof of Theorem 4.8, we only prove the
result under assumption (i). Notice that B is maximally α-monotone due to Propo-
sition 3.5(ii). Now, by Lemma 4.4,

(123) min{1 + γα, 1 + δβ} > 0,

and all operators J1, J2, and T are single valued and have full domain.
Since B is linear, so are J2 = JδB = (Id +δB)−1 and R2 = (1 − µ) Id +µJ2. We

can thus write

T = (1− κ) Id−(1− κ)ε2R2 + κR2R1 + κεR2(124a)

= (1− κ)Q2 + κR2Q1,(124b)

where Q1 := R1 + ε Id and Q2 := Id−ε2R2.
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Now, by Lemma 4.13, (86) is equivalent to (119). Proceeding similarly to the
proof of Theorem 4.8, we derive that Q2 is Lipschitz continuous with constant

(125)
√

(1 + ε2(µ− 1))2 − ϕαJ ≤ 1 + ε2(µ− 1),

that R2Q1 is Lipschitz continuous with constant

(126) (1− ε(µ− 1))

√
1− λ(2 + 2δβ − λ)

1 + 2δβ + δ2`2
≤ 1− ε(µ− 1),

and that at least one of these two inequalities is strict. The conclusion thus follows.

Remark 4.15. It is worth pointing out that the sum of α- and β-monotone oper-
ators with α+ β ≥ 0 can be transformed into the sum of two monotone operators by
shifting the identity between them as

(127) A+B =
(
A+

β − α
2

Id
)

+
(
B +

α− β
2

Id
)

=: Ã+ B̃.

Then one can apply the classical DR algorithm for two new monotone operators Ã
and B̃. However, this is the algorithm that operates on different operators. Here,
our main goal is to show the behavior of the DR algorithm on original data and the
smooth transition from the classical case to the adaptive case of the DR algorithm.
This approach might be especially helpful when the resolvents are given as black boxes,
in which case one just needs to adjust the algorithm using corresponding parameters.

When involving two shifted operators like Ã and B̃, it is natural to seek a shifting
strategy to obtain the optimal linear convergence rate in Theorems 4.8 or 4.14. The
answer is not clear to us as we hope to address the issue in some future work.

5. Applications to structured minimization problems. Given a function
f : X → ]−∞,+∞], we recall that f is proper if

(128) dom f := {x ∈ X | f(x) < +∞} 6= ∅

and lower semicontinuous if

(129) ∀x ∈ dom f, f(x) ≤ lim inf
z→x

f(z).

The function f is said to be α-convex (see, e.g., [37, Definition 4.1]) for some α ∈ R
if ∀x, y ∈ dom f , ∀κ ∈ ]0, 1[,

(130) f((1− κ)x+ κy) +
α

2
κ(1− κ)‖x− y‖2 ≤ (1− κ)f(x) + κf(y).

We say that f is convex if α = 0, strongly convex if α > 0, and weakly convex if α < 0.
It is worthwhile noting that (130) is equivalent to

(131) f((1−κ)x+κy)−α
2
‖(1−κ)x+κy‖2 ≤ (1−κ)

(
f(x)−α

2
‖x‖2

)
+κ
(
f(y)−α

2
‖y‖2

)
due to (6). Thus,

(132) f is α-convex ⇐⇒ f − α

2
‖ · ‖2 is convex.
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In this section, we focus on an important application of the adaptive DR algorithm
to the (α, β)-convex minimization problem, which can be stated as

(133) min
x∈X
{f(x) + g(x)},

where f and g are respectively α- and β-convex functions. To formulate the adaptive
DR algorithm for (133), we also recall that the proximity operator of a proper function
f : X → ]−∞,+∞] with parameter γ ∈ R++ is the mapping Proxγf : X ⇒ X defined
by

(134) ∀x ∈ X, Proxγf (x) := argmin
z∈X

(
f(z) +

1

2γ
‖z − x‖2

)
.

Now let (γ, δ, λ, µ) ∈ R4
++ and κ ∈ ]0, 1[. The adaptive DR algorithm for (133) is

given by

(135) ∀n ∈ N, xn+1 ∈ Txn,

where

T := (1− κ) Id +κR2R1,(136a)

R1 := (1− λ) Id +λProxγf ,(136b)

R2 := (1− µ) Id +µProxδg .(136c)

Next, we will collect necessary concepts from convex analysis and establish that the
adaptive DR operators in (136) is indeed a special case of (56) when applied to sub-
differential operators. In particular, we will show in Lemma 5.2 that for α-convex
functions, proximity operators are exactly resolvents of Fréchet subdifferentials. We
note that this connection is well known for convex functions (see, e.g., [2, Proposi-
tion 16.44]), where the Fréchet subdifferential reduces to the classical convex subdif-
ferential.

Recall that the Fréchet subdifferential of f at x is defined by

(137) ∂̂f(x) :=

{
u ∈ X

∣∣∣ lim inf
z→x

f(z)− f(x)− 〈u, z − x〉
‖z − x‖

≥ 0

}
.

It is known that if f is differentiable at x, then ∂̂f(x) = {∇f(x)}. When f is a
proper convex function, the Fréchet subdifferential coincides with the classical convex
subdifferential (see, e.g., [31, Theorem 1.93]), i.e.,

(138) ∂̂f(x) = ∂f(x) := {u ∈ X | ∀z ∈ X, f(z)− f(x) ≥ 〈u, z − x〉}.

Fact 5.1 (subdifferential sum rule). Let f : X → ]−∞,+∞] be proper and
ϕ : X → ]−∞,+∞] be differentiable at x ∈ dom f . Then

(139) ∂̂(f + ϕ)(x) = ∂̂f(x) +∇ϕ(x).

Proof. This follows from [31, Proposition 1.107(i)].

Lemma 5.2 (proximity operators of α-convex functions). Let f : X → ]−∞,+∞]
be proper, lower semicontinuous, and α-convex. Also let γ ∈ R++ be such that 1+γα >
0. Then the following hold:



ADAPTIVE DOUGLAS–RACHFORD SPLITTING ALGORITHM 2721

(i) ∂̂f is maximally α-monotone.
(ii) Proxγf = Jγ∂̂f is single valued and has full domain.

Proof. According to (132), the function h := f − α
2 ‖ · ‖

2 is convex.
(i) By Fact 5.1,

(140) ∂̂f = ∂̂
(
h+

α

2
‖ · ‖2

)
= ∂̂h+ α Id .

Since h is proper lower semicontinuous convex, we learn from [2, Theorem 21.2] that

∂̂h is maximally monotone, which implies that ∂̂f is maximally α-monotone due to
Lemma 3.2(ii).

(ii) By (i) and Proposition 3.4, Jγ∂̂f is single valued and has full domain. Let

x ∈ X and set ϕ := f + 1
2γ ‖ · −x‖

2. Then

ϕ(z) = f(z) +
1

2γ
‖z − x‖2(141a)

=
(
f(z)− α

2
‖z‖2

)
+

1 + γα

2γ

∥∥∥∥z − 1

1 + γα
x

∥∥∥∥2 − α

2(1 + γα)
‖x‖2.(141b)

Since h = f − α
2 ‖ · ‖

2 is convex, so is ϕ. Using (134) and Fact 5.1, we have

p ∈ Proxγf (x) ⇐⇒ 0 ∈ ∂ϕ(p) = ∂̂f(p) +
1

γ
(p− x)(142a)

⇐⇒ x ∈ (Id +γ∂̂f)(p)(142b)

⇐⇒ p ∈ Jγ∂̂f (x),(142c)

and the conclusion follows.

Lemma 5.3. Let f : X → ]−∞,+∞] and g : X → ]−∞,+∞] be respectively α-
and β-convex. Then f + g is (α + β)-convex. Moreover, if additionally α + β ≥ 0,

then zer(∂̂f + ∂̂g) ⊆ argmin(f + g).

Proof. We write

(143) f + g =
(
f − α

2
‖ · ‖2

)
+
(
g − β

2
‖ · ‖2

)
+
α+ β

2
‖ · ‖2,

which together with (132) implies the (α + β)-convexity of f + g. Next, let x ∈
zer(∂̂f + ∂̂g). If α+ β ≥ 0, then f + g is convex, and we have that

(144) 0 ∈ ∂̂f(x) + ∂̂g(x) ⊆ ∂̂(f + g)(x) = ∂(f + g)(x),

so x ∈ argmin(f + g). The proof is complete.

Theorem 5.4 (adaptive DR algorithm for (α, β)-convex minimization). Let
f : X → ]−∞,+∞] and g : X → ]−∞,+∞] be proper and lower semicontinuous.

Suppose also that f and g are respectively α- and β-convex with zer(∂̂f + ∂̂g) 6= ∅,
and that one of the following holds.

(i) Adaptive DR algorithm: α+ β ≥ 0 and (γ, δ, λ, µ) ∈ R2
++× ]1,+∞[

2
satisfies

(86).
(ii) Classical DR algorithm: λ = µ = 2, γ = δ ∈ R++, and

either α = β = 0(145a)

or α+ β > 0 and 1 + γ
αβ

α+ β
> κ.(145b)
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Then every DR sequence (xn)n∈N generated by T converges weakly to a point x ∈ FixT

with Proxγf (x) ∈ zer(∂̂f+∂̂g) ⊆ argmin(f+g) and the rate of asymptotic regularity of
T is o(1/

√
n). Moreover, if α+β > 0, then (Proxγf (xn))n∈N and (Proxδg(R1xn))n∈N

converge strongly to Proxγf (x) and argmin(f + g) = {Proxγf (x)}.

Proof. In view of Lemmas 5.2 and 5.3, we apply Theorem 4.5 to A = ∂̂f and
B = ∂̂g.

Remark 5.5 (strongly and weakly convex minimization). In [27, Theorems 4.4
and 4.6], the authors proved the convergence of the classical DR algorithm for problem
(133) when f and g are respectively α- and β-convex functions in a Euclidean space
with either α > −β > 0 or β > −α > 0. Roughly speaking, these results require that
the strong convexity strictly outweighs the weak counterpart.

In contrast, our approach (Theorem 5.4) for this problem assumes α+β ≥ 0, which
means the weak convexity only needs to be neutralized. Under this assumption, we
adapt the parameters so that the convergence is guaranteed. Let us recall that when
both functions in (133) are convex, we may just assume there is neither a strong nor
a weak component, i.e., α = β = 0, and obtain the convergence for the classical DR
algorithm.

Recently, for the α+ β = 0 case, the classical DR algorithm has been considered
in [28], where the convergence requires that one function is strongly convex with
Lipschitz continuous gradient. We note that in this case, the convergence of the
adaptive DR algorithm is established in Theorem 5.4(i) without any differentiability
assumption on the functions.

Finally, we present a linear convergence result under Lipschitz assumption on the
gradient of f . For other linear convergence results of related splitting methods in the
context of structured minimization problems, we refer interested readers to [20, 21]
and the references therein.

Theorem 5.6 (linear convergence when∇f is Lipschitz continuous). Let f : X →
R be a differentiable function whose gradient ∇f is Lipschitz continuous with constant
`, and let g : X → ]−∞,+∞] be a proper lower semicontinuous function. Suppose that
either

(i) f is α-convex, g is β-convex, and α+ β > 0; or
(ii) g is β-convex with β > `, and α := −`.

Suppose also that zer(∇f + ∂̂g) 6= ∅ and that (γ, δ, λ, µ) ∈ R2
++ × ]1,+∞[

2
satisfies

(86). Then the adaptive DR operator T is Lipschitz continuous with constant less
than 1. Consequently, every DR sequence (xn)n∈N generated by T converges strongly
to the unique fixed point x of T with linear rate.

Proof. Apply Theorem 4.8 with A = ∂̂f = ∇f and B = ∂̂g.

6. Conclusion. We have studied the adaptive DR algorithm for finding a zero
of the sum of α- and β-monotone operators. The adaptive parameters provide great
flexibility for adjusting the DR algorithm so that the convergence is guaranteed. We
have derived the rate of asymptotic regularity o(1/

√
n) for the adaptive DR operator.

When the strong convexity strictly outweighs the weak one, we have further obtained
the strong convergence of shadow sequences to the solution of the original problem.
Global linear convergence is also achieved with a sharp rate in several important cases.
Our new approach, on the one hand, generalizes previous works in the same direction
and, on the other hand, unifies the convergence analysis of the DR algorithm under
monotone-type assumptions.
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