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Problem 

Find the area of the region 𝑅 between a polar 
curve 𝑟 = 𝑓 𝜃  and two lines, 𝜃 = 𝛼 and 𝜃 = 𝛽. 
 

𝑅 

𝑟 = 𝑓 𝜃  

𝜃 = 𝛼  

𝜃 = 𝛽 
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Subdivide Area into Subregions 
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Estimate Area of Subregions 

If ∆𝜃𝑘 is not too large, we can approximate the 
area 𝐴𝑘 by the area of a sector having central 
angle ∆𝜃𝑘 and radius 𝑟𝑘 = 𝑓 𝜃𝑘 . 
 

𝐴𝑘 ≈ area of sector 
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Add Up Areas of Subregions 

𝐴 = 𝐴1 + 𝐴2 + 𝐴3 + ⋯+ 𝐴𝑛 
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Increase Number of Subdivisions 

𝐴 = lim
𝑛→∞
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Area Enclosed by a Polar Curve 

If 𝑓 𝜃  is continuous and nonnegative for 
𝛼 ≤ 𝜃 ≤ 𝛽, then the area 𝐴 enclosed by the polar 
curve 𝑟 = 𝑓 𝜃  and the lines 𝜃 = 𝛼 and 𝜃 = 𝛽 is 

𝐴 = �
1
2
𝑓 𝜃 2

𝛽

𝛼

𝑑𝜃 

or equivalently 
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Steps to Calculating Area 

1. Sketch the region 𝑅 whose area is to be 
determined. 

2. Draw an arbitrary “radial line” from the origin 
to the boundary curve 𝑟 = 𝑓 𝜃 . 

3. Ask, “Over what interval of values must 𝜃 
vary in order for the radial line to sweep out 
the region 𝑅?” 

4. Your answer in Step 3 will determine the 
lower and upper limits of integration. 
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Example 1 

Find the area of the region 
in the first quadrant 
within the cardioid 
𝑟 = 1 − cos𝜃. 
 
Solution: 
The region is colored in 
blue and a typical radial 
line is shown in yellow. 
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Example 1 (continued) 

For the radial line to sweep out the region, 𝜃 must vary 
from 0 to 𝜋

2
. 

 

𝐴 = �
1
2
𝑟2

𝜋
2

0

𝑑𝜃 = �
1
2

1 − cos 𝜃 2

𝜋
2

0

𝑑𝜃 

=
1
2
� 1 − 2cos 𝜃 + cos2 𝜃

𝜋
2

0
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3
8
𝜋 − 1 
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Example 2 
Find the entire area within the cardioid of Example 1. 
 
Solution: 
For the radial line to sweep out the entire cardioid, 𝜃 
must vary from 0 to 2𝜋. 

𝐴 = �
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Example 3 

Find the area of the region that is outside the 
cardioid 𝑟 = 1 − cos𝜃 and inside the circle 
𝑟 = 1. 
 
Solution: 
To sketch the region, we need to know where 
the circle and cardioid intersect.  To find these 
points, we equate the given expressions for 𝑟. 
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Example 3 (continued) 

1 − cos𝜃 = 1 
0 = cos𝜃 

or  

𝜃 = −
𝜋
2

  and  𝜃 =
𝜋
2

. 
 
The desired area can be 
obtained by subtracting the 
area of the cardioid in 
Quadrants I and IV from the 
area of the circle in 
Quadrants I and IV. 
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Example 3 (continued) 

𝐴 = �
1
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