Areas and Lengths in Polar Coordinates

Part 1: Areas

Problem

Find the area of the region R between a polar curve $r=f(\theta)$ and two lines, $\theta=\alpha$ and $\theta=\beta$.

Subdivide Area into Subregions

J. Gonzalez-Zugasti, University of

Massachusetts - Lowell

Estimate Area of Subregions

If $\Delta \theta_{k}$ is not too large, we can approximate the area A_{k} by the area of a sector having central angle $\Delta \theta_{k}$ and radius $r_{k}=f\left(\theta_{k}\right)$.

$$
\begin{gathered}
A_{k} \approx \text { area of sector } \\
=\frac{1}{2} r_{k}^{2} \Delta \theta_{k} \\
=\frac{1}{2}\left(f\left(\theta_{k}\right)\right)^{2} \Delta \theta_{k}
\end{gathered}
$$

Add Up Areas of Subregions

$$
\begin{aligned}
& A= A_{1}+A_{2}+A_{3}+\cdots+A_{n} \\
&=\sum_{k=1}^{n} A_{k} \\
& \approx \sum_{k=1}^{n} \frac{1}{2}\left(f\left(\theta_{k}\right)\right)^{2} \Delta \theta_{k}
\end{aligned}
$$

Increase Number of Subdivisions

$$
\begin{aligned}
A= & \lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{2}\left(f\left(\theta_{k}\right)\right)^{2} \Delta \theta_{k} \\
& =\int_{\alpha}^{\beta} \frac{1}{2}(f(\theta))^{2} d \theta
\end{aligned}
$$

Area Enclosed by a Polar Curve

If $f(\theta)$ is continuous and nonnegative for $\alpha \leq \theta \leq \beta$, then the area A enclosed by the polar curve $r=f(\theta)$ and the lines $\theta=\alpha$ and $\theta=\beta$ is

$$
A=\int_{\alpha}^{\beta} \frac{1}{2}(f(\theta))^{2} d \theta
$$

or equivalently

$$
A=\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta
$$

Steps to Calculating Area

1. Sketch the region R whose area is to be determined.
2. Draw an arbitrary "radial line" from the origin to the boundary curve $r=f(\theta)$.
3. Ask, "Over what interval of values must θ vary in order for the radial line to sweep out the region R ?"
4. Your answer in Step 3 will determine the lower and upper limits of integration.

Example 1

Find the area of the region in the first quadrant within the cardioid $r=1-\cos \theta$.

Solution:

The region is colored in blue and a typical radial

line is shown in yellow.

Example 1 (continued)

For the radial line to sweep out the region, θ must vary from 0 to $\frac{\pi}{2}$.

$$
\begin{aligned}
& A=\int_{0}^{\frac{\pi}{2}} \frac{1}{2} r^{2} d \theta=\int_{0}^{\frac{\pi}{2}} \frac{1}{2}(1-\cos \theta)^{2} d \theta \\
& \quad=\frac{1}{2} \int_{0}^{\frac{\pi}{2}}\left(1-2 \cos \theta+\cos ^{2} \theta\right) d \theta=\cdots=\frac{3}{8} \pi-1
\end{aligned}
$$

Example 2

Find the entire area within the cardioid of Example 1.

Solution:

For the radial line to sweep out the entire cardioid, θ must vary from 0 to 2π.

$$
\begin{aligned}
A= & \int_{0}^{2 \pi} \frac{1}{2} r^{2} d \theta=\int_{0}^{2 \pi} \frac{1}{2}(1-\cos \theta)^{2} d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi}\left(1-2 \cos \theta+\cos ^{2} \theta\right) d \theta=\cdots=\frac{3}{2} \pi
\end{aligned}
$$

Example 3

Find the area of the region that is outside the cardioid $r=1-\cos \theta$ and inside the circle $r=1$.

Solution:

To sketch the region, we need to know where the circle and cardioid intersect. To find these points, we equate the given expressions for r.

Example 3 (continued)

$$
\begin{gathered}
1-\cos \theta=1 \\
0=\cos \theta
\end{gathered}
$$

or

$$
\theta=-\frac{\pi}{2} \text { and } \theta=\frac{\pi}{2}
$$

The desired area can be obtained by subtracting the area of the cardioid in Quadrants I and IV from the
 area of the circle in Quadrants I and IV.

Example 3 (continued)

$$
\begin{aligned}
& A=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2}(1)^{2} d \theta-\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2}(1-\cos \theta)^{2} d \theta \\
& \quad=\frac{\pi}{2}-\left(\frac{3 \pi}{4}-2\right) \\
& \quad=2-\frac{\pi}{4}
\end{aligned}
$$

THIS YEAR'S POLAR CO-ORDINATES
http://www.pleacher.com/mp/mhumor/comx/calculus/polar.jpg

