Area and Estimating with Finite
Sums



Problem:

Find the area of a region R bounded below by the x-
axis, on the sides by the lines x = a and x = b, and
above by a curve y = f(x), where f is continuous on
la,b] and f(x) = 0 forall x in [a, b]
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First Step: Subdivide [a, b] inton
subintervals of equal width of Ax
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Second Step: On each subinterval, draw a rectangle to
approximate the area of the curve over the subinterval
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Third Step: Determine the area of each
rectangle

*  Width of the k-th rectangle = Ax
* Height of k-th rectangle = f(cy)
* Area of k-th rectangle = A, = f(cy) - Ax




Fourth Step: Sum up the areas of the rectangles
to approximate the area under the curve
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Upper sum method: (cg, f (cy)) is the absolute
maximum of y = f(x) on the k-th subinterval

fy (C b (C])) (cn-b f (Cn_])) Cn, f (cn))

3

a c; €2 G Cii Ci b




Lower sum method: (¢, f (cy)) is the absolute
minimum of y = f(x) on the k-th subinterval
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Midpoint method: ¢;, is the midpoint

of the k-th subinterval
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Right endpoint method: ¢, is the right

endpoint of the k-th subinterval
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Left endpoint method: ¢, is the left
endpoint of the k-th subinterval
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Example 1

Use finite approximation to estimate the area
under f(x) = 3x + 1 over [2,6] using a lower
sum with four rectangles of equal width.

Solution:

fx)=3x+1
a=2andb =6
n==4



Example 1 (continued)
f(x) =3x+ 1over|2,6]

_ width of the interval[a, b]

Ax = number of subintervals
b—a
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Note: in this example, the lower
sum method is the same as the
left endpoint method
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Example 1 (continued)
f(x) =3x+ 1over|2,6]

Lower sum method (c4, flcq)
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Example 1 (continued)
f(x) =3x+ 1over|[2,6]

A=~ f(c1)-Ax + f(cp) - Ax

+ fc3) - Ax + f(ca)
- Ax

A=f(2)-1+f(3) 1+ f(4)
14 f(5) 1

A=7+10+ 13+ 16 =46

Answer: The area under the
curve y = 3x + 1 over the
interval [2,6] is approximately 46.



Example 2

Using the midpoint rule, estimate the area
1

under f(x) = —over [1,9] using four rectangles.
Solution:
(x) =-
fx) =7
a=1landb =9

n=4



Example 2 (continued)
f(x) = - over [1,9]

_ width of the interval|a, D]

Ax =
number of subintervals
l“y | y=1/x
b—a S
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Example 2 (continued)
f(x) = % over [1,9]

A)7
I y=1/x
Midpoint rule
0.8
0.6
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Example 2 (continued)
f(x) = %over 11,9]

A= f(c1) Dx+f(cp) Dx+ f(c3)
“Ax + f(cy) " Ax

A=f(2)-2+f(4)-2+ f(6)-2
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DO YOUR
HOMEWORK,
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