Area and Estimating with Finite Sums

Part 2

Finite Sums with
Distance Traveled and Displacement

Finite Sums and Distance Traveled

- $v(t)=$ velocity of an object moving in one direction along a straight line
- $s(t)=$ position of the object
- $v=\frac{d s}{d t} \Leftrightarrow s=\int v d t$

Finite Sums and Distance Traveled

- If $F(t)$ is any antiderivative of $v(t)$, then $s(t)=F(t)+C$
- The total distance traveled by the object over the time interval $[a, b]$ is given by

$$
\begin{aligned}
s(b)-s(a) & =[F(b)+C]-[F(a)+C] \\
& =F(b)-F(a)
\end{aligned}
$$

Finite Sums and Distance Traveled

We don't always know a formula for $v(t)$
To approximate the total distance traveled:

- Subdivide $[a, b]$ into n subintervals of equal width of Δt
- Let t_{k} be any point in the k-th subinterval
- If Δt is small enough, the total distance traveled on the k-th subinterval is approximately $v\left(t_{k}\right) \Delta t$ $s(b)-s(a)$ $\approx v\left(t_{1}\right) \Delta t+v\left(t_{2}\right) \Delta t+v\left(t_{3}\right) \Delta t+\cdots+v\left(t_{n}\right) \Delta t$

Finite Sums and Distance Traveled

Total distance traveled $=s(b)-s(a)$

$$
\approx v\left(t_{1}\right) \Delta t+v\left(t_{2}\right) \Delta t+v\left(t_{3}\right) \Delta t+\cdots+v\left(t_{n}\right) \Delta t
$$

This is the approximation for the area under the curve $y=v(t)$ over the interval $[a, b]$!

Example 1

You are sitting on a bank of a tidal river watching the incoming tide carry a bottle upstream. You record the velocity of the flow every 5 minutes for an hour, with the results in the accompanying table. About how far upstream did the bottle travel during that hour? Find an estimate using 12 subintervals of length 5 with
a. Left endpoint values
b. Right endpoint values

Time $(\mathbf{m i n})$	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 0}$	$\mathbf{3 5}$	$\mathbf{4 0}$	$\mathbf{4 5}$	$\mathbf{5 0}$	$\mathbf{5 5}$	$\mathbf{6 0}$
Velocity $(\mathrm{m} / \mathrm{sec})$	1	1.2	1.7	2	1.8	1.6	1.4	1.2	1	1.8	1.5	1.2	0

Example 1 (continued)

Solution (a):

$$
\begin{gathered}
{[a, b]=[0,60] \text { minutes }} \\
n=12 \\
\Delta t=\frac{\text { width of interval }}{\text { number of subintervals }} \\
=\frac{60-0}{12}=5 \text { minutes }=300 \text { seconds }
\end{gathered}
$$

(We change time to seconds to match velocity!)

Example 1 (continued)

Time $(\mathbf{m i n})$	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 0}$	$\mathbf{3 5}$	$\mathbf{4 0}$	$\mathbf{4 5}$	$\mathbf{5 0}$	$\mathbf{5 5}$	$\mathbf{6 0}$
Velocity $(\mathrm{m} / \mathrm{sec})$	1	1.2	1.7	2	1.8	1.6	1.4	1.2	1	1.8	1.5	1.2	0

- Interval 1 is [0,5]; Interval 2 is [5,10]; Interval 3 is [15,20];...; Interval 12 is [55,60]
- $t_{k}=$ Left endpoint value of k-th interval
- $t_{1}=0 ; t_{2}=5 ; t_{3}=10 ; \ldots ; t_{12}=55$

Example 1 (continued)

Time $(\mathbf{m i n})$	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 0}$	$\mathbf{3 5}$	$\mathbf{4 0}$	$\mathbf{4 5}$	$\mathbf{5 0}$	$\mathbf{5 5}$	$\mathbf{6 0}$
Velocity $(\mathrm{m} / \mathrm{sec})$	1	1.2	1.7	2	1.8	1.6	1.4	1.2	1	1.8	1.5	1.2	0

distance traveled $\approx v\left(t_{1}\right) \Delta t+v\left(t_{2}\right) \Delta t+v\left(t_{3}\right) \Delta t+\cdots+v\left(t_{12}\right) \Delta t$

$$
\begin{aligned}
& =v(0) \Delta t+v(5) \Delta t+v(10) \Delta t+\cdots+v(55) \Delta t \\
& =(1) 300+(1.2) 300+(1.7) 300+(2) 300+(1.8) 300 \\
& +(1.6) 300+(1.4) 300+(1.2) 300+(1) 300+(1.8) 300 \\
& +(1.5) 300+(1.2) 300=5220 \mathrm{~m}
\end{aligned}
$$

Answer (a): The bottle traveled about 5220 m upstream during that hour.

Example 1 (continued)

Solution (b):

The only change is that we are using the right endpoint values.

$\Delta t=300$ seconds

Time $(\mathbf{m i n})$	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 0}$	$\mathbf{3 5}$	$\mathbf{4 0}$	$\mathbf{4 5}$	$\mathbf{5 0}$	$\mathbf{5 5}$	$\mathbf{6 0}$
Velocity $(\mathrm{m} / \mathrm{sec})$	1	1.2	1.7	2	1.8	1.6	1.4	1.2	1	1.8	1.5	1.2	0

- $t_{k}=$ Right endpoint value of k-th interval
- $t_{1}=5 ; t_{2}=10 ; t_{3}=15 ; \ldots ; t_{12}=60$

Example 1 (continued)

Time $(\mathbf{m i n})$	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 0}$	$\mathbf{3 5}$	$\mathbf{4 0}$	$\mathbf{4 5}$	$\mathbf{5 0}$	$\mathbf{5 5}$	$\mathbf{6 0}$
Velocity $(\mathrm{m} / \mathrm{sec})$	1	1.2	1.7	2	1.8	1.6	1.4	1.2	1	1.8	1.5	1.2	0

distance traveled $\approx v\left(t_{1}\right) \Delta t+v\left(t_{2}\right) \Delta t+v\left(t_{3}\right) \Delta t+\cdots+v\left(t_{12}\right) \Delta t$

$$
\begin{aligned}
& =v(5) \Delta t+v(10) \Delta t+v(15) \Delta t+\cdots+v(60) \Delta t \\
& =(1.2) 300+(1.7) 300+(2) 300+(1.8) 300+(1.6) 300 \\
& +(1.4) 300+(1.2) 300+(1) 300+(1.8) 300+(1.5) 300 \\
& +(1.2) 300+(0) 300=4920 \mathrm{~m}
\end{aligned}
$$

Answer (b): The bottle traveled about 4920 m upstream during that hour.

Finite Sums and Distance Traveled

- $v(t)=$ velocity of an object moving in both directions along a straight line
- $s(t)=$ position of the object
- $v=\frac{d s}{d t} \Leftrightarrow s=\int v d t$
- $s(b)-s(a)$ no longer represents the total distance traveled
- $s(b)-s(a)$ is the displacement of the object (the difference between its initial and final positions)

Finite Sums and Distance Traveled

The total distance traveled is approximately:

$$
\left|v\left(t_{1}\right)\right| \Delta t+\left|v\left(t_{2}\right)\right| \Delta t+\left|v\left(t_{3}\right)\right| \Delta t+\cdots+\left|v\left(t_{n}\right)\right| \Delta t
$$

