Area and Estimating with Finite Sums

Part 2

Finite Sums with Distance Traveled and Displacement

- v(t) = velocity of an object moving in one direction along a straight line
- s(t) = position of the object

•
$$v = \frac{ds}{dt} \Leftrightarrow s = \int v \, dt$$

- If F(t) is any antiderivative of v(t), then s(t) = F(t) + C
- The **total distance traveled** by the object over the time interval [a, b] is given by s(b) - s(a) = [F(b) + C] - [F(a) + C]= F(b) - F(a)

We don't always know a formula for v(t)

To approximate the total distance traveled:

- Subdivide [a, b] into n subintervals of equal width of Δt
- Let t_k be any point in the k-th subinterval

- If Δt is small enough, the total distance traveled on the k-th subinterval is approximately $v(t_k)\Delta t$ s(b) - s(a) $\approx v(t_1)\Delta t + v(t_2)\Delta t + v(t_3)\Delta t + \dots + v(t_n)\Delta t$

Total distance traveled = s(b) - s(a) $\approx v(t_1)\Delta t + v(t_2)\Delta t + v(t_3)\Delta t + \dots + v(t_n)\Delta t$

This is the approximation for the area under the curve y = v(t) over the interval [a, b]!

Example 1

You are sitting on a bank of a tidal river watching the incoming tide carry a bottle upstream. You record the velocity of the flow every 5 minutes for an hour, with the results in the accompanying table. About how far upstream did the bottle travel during that hour? Find an estimate using 12 subintervals of length 5 with

a. Left endpoint values

b. Right endpoint values

Time (min)	0	5	10	15	20	25	30	35	40	45	50	55	60
Velocity (m/sec)	1	1.2	1.7	2	1.8	1.6	1.4	1.2	1	1.8	1.5	1.2	0

Solution (a):

$$[a, b] = [0, 60] \text{ minutes}$$

$$n = 12$$
width of interval
$$\Delta t = \frac{\text{width of interval}}{\text{number of subintervals}}$$

$$= \frac{60 - 0}{12} = 5 \text{ minutes} = 300 \text{ seconds}$$

(We change time to seconds to match velocity!)

Time (min)	0	5	10	15	20	25	30	35	40	45	50	55	60
Velocity (m/sec)	1	1.2	1.7	2	1.8	1.6	1.4	1.2	1	1.8	1.5	1.2	0

- Interval 1 is [0,5]; Interval 2 is [5,10]; Interval 3 is [15,20];...;Interval 12 is [55,60]
- $t_k = \text{Left endpoint value of } k$ -th interval
- $t_1 = 0$; $t_2 = 5$; $t_3 = 10$; ...; $t_{12} = 55$

Time (min)	0	5	10	15	20	25	30	35	40	45	50	55	60
Velocity (m/sec)	1	1.2	1.7	2	1.8	1.6	1.4	1.2	1	1.8	1.5	1.2	0

distance traveled $\approx v(t_1)\Delta t + v(t_2)\Delta t + v(t_3)\Delta t + \dots + v(t_{12})\Delta t$ = $v(0)\Delta t + v(5)\Delta t + v(10)\Delta t + \dots + v(55)\Delta t$ = (1)300 + (1.2)300 + (1.7)300 + (2)300 + (1.8)300+ (1.6)300 + (1.4)300 + (1.2)300 + (1)300 + (1.8)300+ (1.5)300 + (1.2)300 = 5220 m

<u>Answer (a)</u>: The bottle traveled about 5220 m upstream during that hour.

Solution (b):

The only change is that we are using the right endpoint values.

 $\Delta t = 300$ seconds

Time (min)	0	5	10	15	20	25	30	35	40	45	50	55	60
Velocity (m/sec)	1	1.2	1.7	2	1.8	1.6	1.4	1.2	1	1.8	1.5	1.2	0

• $t_k = \text{Right endpoint value of } k$ -th interval

• $t_1 = 5; t_2 = 10; t_3 = 15; ...; t_{12} = 60$

Time (min)	0	5	10	15	20	25	30	35	40	45	50	55	60
Velocity (m/sec)	1	1.2	1.7	2	1.8	1.6	1.4	1.2	1	1.8	1.5	1.2	0

distance traveled $\approx v(t_1)\Delta t + v(t_2)\Delta t + v(t_3)\Delta t + \dots + v(t_{12})\Delta t$ = $v(5)\Delta t + v(10)\Delta t + v(15)\Delta t + \dots + v(60)\Delta t$ = (1.2)300 + (1.7)300 + (2)300 + (1.8)300 + (1.6)300+ (1.4)300 + (1.2)300 + (1)300 + (1.8)300 + (1.5)300+ (1.2)300 + (0)300 = 4920 m

<u>Answer (b)</u>: The bottle traveled about 4920 m upstream during that hour.

- v(t) = velocity of an object moving in <u>both</u> directions along a straight line
- s(t) = position of the object

•
$$v = \frac{ds}{dt} \Leftrightarrow s = \int v \, dt$$

- s(b) s(a) no longer represents the total distance traveled
- s(b) s(a) is the displacement of the object (the difference between its initial and final positions)

The **total distance traveled** is approximately:

 $|v(t_1)|\Delta t + |v(t_2)|\Delta t + |v(t_3)|\Delta t + \dots + |v(t_n)|\Delta t$

