Sigma Notation and Limits of Finite Sums

Part 2: Limits of Finite Sums and Riemann Sums

Limits of Finite Sums

Recall:

If f is a non-negative, continuous function on the interval $[a, b]$ and if A is the area under the curve $y=f(x)$ over the interval $[a, b]$, then

$$
A \approx f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+f\left(c_{3}\right) \Delta x+\cdots+f\left(c_{n}\right) \Delta x
$$

where $[a, b]$ has been subdivided into n subintervals of equal width of Δx and c_{k} is some point in the k-th subinterval.

Limits of Finite Sums

- We can now write this approximation in sigma notation:

$$
A \approx \sum_{k=1}^{n} f\left(c_{k}\right) \cdot \Delta x
$$

- As we increase the number of subdivisions of $[a, b]$ (that is, as we increase n), this finite sum becomes more accurate. Hence, it makes sense to write

$$
A=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(c_{k}\right) \cdot \Delta x
$$

Riemann Sums

While rectangles of equal widths are convenient, they are not necessary. All we need is that the widths of all rectangles decrease to zero as the number of rectangles increases to infinity.

Riemann Sums

Suppose that $f(x)$ is a bounded function defined on a closed interval [a, b] and that the interval $[a, b]$ is divided into n subintervals by choosing arbitrary points $x_{1}, x_{2}, x_{3}, \cdots, x_{n-1}$ satisfying

$$
a=x_{0}<x_{1}<x_{2}<x_{3}<\cdots<x_{n-1}<x_{n}=b
$$

The set

$$
P=\left\{x_{0}, x_{1}, x_{2}, x_{3}, \cdots, x_{n-1}, x_{n}\right\}
$$

is called a partition of $[a, b]$.

Riemann Sums

The \boldsymbol{k}-th subinterval of \boldsymbol{P} is $\left[x_{k-1}, x_{k}\right]$ and its width is $\Delta x_{k}=x_{k}-x_{k-1}$. The largest of these lengths is called the norm of \boldsymbol{P}, written $\|P\|$.

Riemann Sums

Now, choose arbitrary points c_{k} in the k-th subinterval for each $k=1,2,3, \cdots, n-1, n$ to get the Riemann sum

$$
\begin{aligned}
S_{P}= & f\left(c_{1}\right) \Delta x_{1}+f\left(c_{2}\right) \Delta x_{2}+f\left(c_{3}\right) \Delta x_{3}+\cdots \\
& +f\left(c_{n}\right) \Delta x_{n}=\sum_{k=1}^{n} f\left(c_{k}\right) \cdot \Delta x_{k}
\end{aligned}
$$

Example 1

a) For $f(x)=x$, find a formula for the Riemann sum obtained by dividing [1,2] into n equal subintervals using the left endpoint rule.
b) Then take a limit of these sums as $n \rightarrow \infty$ to calculate the area under the curve over [1,2].

Example 1 (continued) $f(x)=x$ over $[1,2]$

Solution (a): Find the formula for the Riemann sum.

$$
\begin{gathered}
f(x)=x \\
a=1 \text { and } b=2
\end{gathered}
$$

For all k :

$$
\Delta x_{k}=\Delta x=\frac{\text { width of the interval }}{\text { number of subintervals }}
$$

$$
=\frac{b-a}{n}=\frac{2-1}{n}=\frac{1}{n}
$$

Example 1 (continued)
 $f(x)=x$ over $[1,2]$

$$
\begin{gathered}
c_{1}=1 \\
c_{2}=1+\frac{1}{n} \\
c_{3}=1+\frac{2}{n} \\
\vdots \\
c_{k}=1+\frac{k-1}{n}
\end{gathered}
$$

Example 1 (continued) $f(x)=x$ over $[1,2]$

$$
\begin{gathered}
S_{P}=\sum_{k=1}^{n} f\left(c_{k}\right) \cdot \Delta x_{k} \\
S_{P}=\sum_{k=1}^{n} f\left(1+\frac{k-1}{n}\right) \cdot \frac{1}{n} \\
S_{P}=\sum_{k=1}^{n}\left(1+\frac{k-1}{n}\right) \cdot \frac{1}{n}
\end{gathered}
$$

Example 1 (continued) $f(x)=x$ over $[1,2]$

$$
\begin{gathered}
S_{P}=\sum_{k=1}^{n}\left(\frac{1}{n}+\frac{k-1}{n^{2}}\right) \\
S_{P}=\sum_{k=1}^{n} \frac{1}{n}+\sum_{k=1}^{n} \frac{k-1}{n^{2}} \\
S_{P}=n \cdot \frac{1}{n}+\frac{1}{n^{2}} \sum_{k=1}^{n}(k-1)
\end{gathered}
$$

Example 1 (continued) $f(x)=x$ over [1,2]

$$
\begin{gathered}
S_{P}=1+\frac{1}{n^{2}}\left[\sum_{k=1}^{n} k-\sum_{k=1}^{n} 1\right] \\
S_{P}=1+\frac{1}{n^{2}}\left[\frac{n(n+1)}{2}-n \cdot 1\right] \\
S_{P}=1+\frac{n+1}{2 n}-\frac{1}{n}=1+\frac{1}{2}+\frac{1}{2 n}-\frac{2}{2 n}=\frac{3}{2}-\frac{1}{2 n}
\end{gathered}
$$

Answer (a):

$$
S_{P}=\frac{3}{2}-\frac{1}{2 n}
$$

Example 1 (continued) $f(x)=x$ over $[1,2]$

Solution (b): Take a limit of S_{P} to calculate the area under the curve.

$$
\begin{gathered}
A=\lim _{n \rightarrow \infty} S_{P}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(c_{k}\right) \cdot \Delta x \\
A=\lim _{n \rightarrow \infty}\left(\frac{3}{2}-\frac{1}{2 n}\right)=\frac{3}{2}
\end{gathered}
$$

Answer (b):
The area under the curve is $A=\frac{3}{2}$.

Example 1 (continued) $f(x)=x$ over $[1,2]$

This makes since the area under the curve is just a square with sides of
length 1 topped with an equilateral right triangle with sides of length 1.
$A=$
area of square + area
 of triangle $=1 \cdot 1+\frac{1}{2} \cdot 1$. $1=\frac{3}{2}$.

Beautiful Dance Moves

.|||| GraphJam.com

