The Fundamental Theorem of Calculus

Part 2

Recall: The Fundamental Theorem of Calculus

(a) Let f be continuous on an open interval I, and let $a \in I$. If

$$
F(x)=\int_{a}^{x} f(t) d t
$$

Then

$$
F^{\prime}(x)=\frac{d}{d x}[F(x)]=\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=f(x)
$$

(b) If f is continuous on $[a, b]$ and if F is an antiderivative of f on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Example 1

Find

$$
\frac{d}{d x}\left[\int_{0}^{\sqrt{x}} \cos (t) d t\right]
$$

Example 1 (continued)

Solution:

$$
\frac{d}{d x}\left[\int_{0}^{\sqrt{x}} \cos (t) d t\right]=\frac{d}{d x}[f(g(x))]
$$

where

$$
f(x)=\int_{0}^{x} \cos (t) d t
$$

and

$$
g(x)=\sqrt{x}
$$

Example 1 (continued)

By the Chain Rule:

$$
\frac{d}{d x}\left[\int_{0}^{\sqrt{x}} \cos (t) d t\right]=\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Now

$$
\begin{gathered}
f^{\prime}(x)=\frac{d}{d x}\left[\int_{0}^{x} \cos (t) d t\right]=\cos (x) \\
f^{\prime}(g(x))=\cos (g(x))=\cos \sqrt{x}
\end{gathered}
$$

and

$$
g^{\prime}(x)=\frac{d}{d x}(\sqrt{x})=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}}
$$

Example 1 (continued)

Therefore

$$
\begin{aligned}
& \frac{d}{d x}\left[\int_{0}^{\sqrt{x}} \cos (t) d t\right] \\
& \quad=\cos (\sqrt{x}) \cdot\left(\frac{1}{2 \sqrt{x}}\right) \\
& \quad=\frac{\cos \sqrt{x}}{2 \sqrt{x}}
\end{aligned}
$$

Discovery from Example 1

$$
\frac{d}{d x}\left[\int_{a}^{g(x)} f(t) d t\right]=f(g(x)) \cdot g^{\prime}(x)
$$

Example 2

Find

$$
\frac{d}{d x}\left[\int_{\tan (x)}^{0} \frac{1}{1+t^{2}} d t\right]
$$

Solution:
$\frac{d}{d x}\left[\int_{\tan (x)}^{0} \frac{1}{1+t^{2}} d t\right]$

$$
=\frac{d}{d x}\left[-\int_{0}^{\tan (x)} \frac{1}{1+t^{2}} d t\right]
$$

Example 2 (continued)

$$
\begin{aligned}
\frac{d}{d x}[& \left.-\int_{0}^{\tan (x)} \frac{1}{1+t^{2}} d t\right] \\
& =-\frac{1}{1+(\tan (x))^{2}} \cdot \frac{d}{d x}(\tan (x)) \\
& =-\frac{\sec ^{2}(x)}{1+\tan ^{2}(x)} \\
& =-\frac{\sec ^{2}(x)}{\sec ^{2}(x)}=-1
\end{aligned}
$$

Example 3

Find the total area between the region
$y=\sec (x) \tan (x),-\frac{\pi}{4} \leq$
$x \leq \frac{\pi}{4}$ and the x-axis.

Example 3 (continued)

Solution:

In order to find the total area, we will need to calculate the area below the x-axis and the area above the x-axis.

Example 3 (continued)

$A_{1}=$ area under the x-axis
$=-\int_{-\pi / 4}^{0} \sec (x) \tan (x) d x$
$=-\sec (x)]_{-\pi / 4}^{0}$
$=-\sec (0)-\left(-\sec \left(-\frac{\pi}{4}\right)\right)=-1+\sqrt{2}$

Example 3 (continued)

$A_{2}=$ area above the x-axis

$$
=\int_{0}^{\pi / 4} \sec (x) \tan (x) d x
$$

$=\sec (x)]_{0}^{\pi / 4}$
$=\sec \left(\frac{\pi}{4}\right)-\sec (0)=\sqrt{2}-1$

Example 6 (continued)

Answer:
The total area is:

$$
\begin{aligned}
A= & A_{1}+A_{2} \\
& =(-1+\sqrt{2})+(\sqrt{2}-1) \\
& =2 \sqrt{2}-2
\end{aligned}
$$

Displacement and Distance Traveled

Suppose $v(t)$ is the velocity of an object moving along a straight line and that $s(t)$ is the position.

$$
s=\int v d t
$$

It follows from the First Fundamental Theorem of Calculus that the displacement of that object over the time interval $[a, b]$ is

$$
s(b)-s(a)=\int_{a}^{b} v(t) d t
$$

Displacement and Distance Traveled

To find the total distance traveled, which is the distance traveled in the positive direction plus the distance traveled in the negative direction, we have:
total distance traveled during time

$$
\text { interval }[a, b]=\int_{a}^{b}|v(t)| d t
$$

