Substitution and Area Between Curves

Part 2: Area Between Two Curves

Area Between Two Curves

If f and g are continuous with $f(x) \geq g(x)$ on [a, b],
then the area of the region bounded above by $y=f(x)$, below by $y=g(x)$, on the left by the line $x=a$ and on the right by the line $x=b$ is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

We call A the area of the region between $y=f(x)$ and $y=g(x)$ from a to b.

Example 1

Find the area of the region between $y=x+6$ and $y=x^{2}$ from 0 to 2.

Solution:

To determine the top function, the bottom function, and the limits of integration, it is often helpful to make a sketch.

Example 1 (continued)

$$
A=\int_{0}^{2}\left[(x+6)-x^{2}\right] d x
$$

$$
\begin{aligned}
= & \left.\left(\frac{1}{2} x^{2}+6 x-\frac{1}{3} x^{3}\right)\right|_{0} ^{2} \\
= & \left(\frac{1}{2} \cdot 2^{2}+6 \cdot 2-\frac{1}{3} \cdot 2^{3}\right) \\
& \quad-\left(\frac{1}{2} \cdot 0^{2}+6 \cdot 0-\frac{1}{3} \cdot 0^{3}\right) \\
= & \frac{34}{3}
\end{aligned}
$$

Example 2

Find the area of the region enclosed between $y=x+6$ and $y=x^{2}$.

Solution:
First, find where the two curves meet:

$$
\begin{gathered}
x^{2}=x+6 \\
x^{2}-x-6=0 \\
(x-3)(x+2)=0 \\
x=3, x=-2
\end{gathered}
$$

Example 2 (continued)

$$
\begin{aligned}
A= & \int_{-2}^{3}\left[(x+6)-x^{2}\right] d x \\
& =\left.\left(\frac{1}{2} x^{2}+6 x-\frac{1}{3} x^{3}\right)\right|_{-2} ^{3} \\
& =\left(\frac{1}{2} \cdot 3^{2}+6 \cdot 3-\frac{1}{3} \cdot 3^{3}\right) \\
& -\left(\frac{1}{2} \cdot(-2)^{2}+6 \cdot(-2)-\frac{1}{3} \cdot(-2)^{3}\right)=\frac{125}{6}
\end{aligned}
$$

Example 3

Find the area of the region enclosed by the curves
$y=\sqrt{x}, y=-x+6$ and
$y=1$.

Solution:

First sketch the curves,
 clearly labeling the intersection points.

Example 3 (continued)

Notice that we need to break this up into two integrals:

$$
\begin{gathered}
A_{1}=\int_{1}^{4}[\sqrt{x}-1] d x=\cdots=\frac{5}{3} \\
A_{2}=\int_{4}^{5}[(-x+6)-1] d x \\
\quad=\cdots=\frac{1}{2}
\end{gathered}
$$

Answer:

$$
A=A_{1}+A_{2}=\frac{5}{3}+\frac{1}{2}=\frac{13}{6}
$$

Area by Integrating with Respect to y

Sometimes you need to find the area of a region bounded above and below by horizontal lines and bounded on the left and right by the graphs of two functions of y.

Example 4

Repeat Example 3 by integrating with respect to
y.

$y=-x+6$ and $y=1$.)

Example 4 (continued)

Solution:

$$
\begin{gathered}
y=-x+6 \Rightarrow x=-y+6 \\
y=\sqrt{x} \Rightarrow x=y^{2} \\
A=\int_{1}^{2}\left[(-y+6)-y^{2}\right] d y \\
=\cdots=\frac{13}{6}
\end{gathered}
$$

This was much easier since
 we did not need to calculate two different integrals to find the area.

Example 5

Find the area of the region enclosed by the curves $y=x^{4}-4 x^{2}+4$ and $y=x^{2}$.

Solution:

Clearly, $y=x^{2}$ is a parabola with vertex $(0,0)$ that opens upwards.

$$
\begin{aligned}
y= & x^{4}-4 x^{2}+4 \\
& =\left(x^{2}-2\right)^{2} \\
& =(x-\sqrt{2})^{2}(x+\sqrt{2})^{2}
\end{aligned}
$$

Example 5 (continued)

So the only x-intercepts are $(-\sqrt{2}, 0)$ and $(\sqrt{2}, 0)$.
Since $y=x^{4}-4 x^{2}+4$ is a $4^{\text {th }}$ degree polynomial with a positive leading coefficient, we know that the shape of the curve will look like a rounded "W".

Since the graph only crosses the x-axis at two points, they must be the bottoms of the "W".

Example 5 (continued)

But the question is, where do the two curves intersect?

$$
\begin{gathered}
x^{4}-4 x^{2}+4=x^{2} \\
x^{4}-5 x^{2}+4=0 \\
\left(x^{2}-4\right)\left(x^{2}-1\right)=0 \\
(x-2)(x+2)(x-1)(x+1)=0
\end{gathered}
$$

So the curves intersect when $x=2, x=-2$, $x=1$ and $x=-1$.

Example 5 (continued)

Example 5 (continued)

$$
\begin{aligned}
A_{1}=\int_{-2}^{-1} & {\left[x^{2}-\left(x^{4}-4 x^{2}+4\right)\right] d x } \\
& =\int_{-2}^{-1}\left[-x^{4}+5 x^{2}-4\right] d x \\
& =\left.\left(-\frac{1}{5} x^{5}+5 \cdot \frac{1}{3} x^{3}-4 x\right)\right|_{-2} ^{-1} \\
& =\left(-\frac{1}{5}(-1)^{5}+5 \cdot \frac{1}{3}(-1)^{3}-4(-1)\right) \\
& -\left(-\frac{1}{5}(-2)^{5}+5 \cdot \frac{1}{3}(-2)^{3}-4(-2)\right) \\
& =\left(\frac{1}{5}-\frac{5}{3}+4\right)-\left(\frac{32}{5}-\frac{40}{3}+8\right)
\end{aligned}
$$

Example 5 (continued)

$$
\begin{aligned}
A_{2}=\int_{-1}^{1}[& \left.\left(x^{4}-4 x^{2}+4\right)-x^{2}\right] d x=\int_{-1}^{1}\left[x^{4}-5 x^{2}+4\right] d x \\
& =\left.\left(\frac{1}{5} x^{5}-5 \cdot \frac{1}{3} x^{3}+4 x\right)\right|_{-1} ^{1} \\
& =\left(\frac{1}{5} \cdot 1^{5}-5 \cdot \frac{1}{3} \cdot 1^{3}+4 \cdot 1\right)-\left(\frac{1}{5}(-1)^{5}-5 \cdot \frac{1}{3}(-1)^{3}+4(-1)\right) \\
& =\left(\frac{1}{5}-\frac{5}{3}+4\right)-\left(-\frac{1}{5}+\frac{5}{3}-4\right)
\end{aligned}
$$

$$
A_{3}=\int_{1}^{2}\left[x^{2}-\left(x^{4}-4 x^{2}+4\right)\right] d x=\int_{1}^{2}\left[-x^{4}+5 x^{2}-4\right] d x
$$

$$
=\left.\left(-\frac{1}{5} x^{5}+5 \cdot \frac{1}{3} x^{3}-4 x\right)\right|_{1} ^{2}
$$

$$
=\left(-\frac{1}{5} \cdot 2^{5}+5 \cdot \frac{1}{3} \cdot 2^{3}-4 \cdot 2\right)-\left(-\frac{1}{5} \cdot 1^{5}+5 \cdot \frac{1}{3} \cdot 1^{3}-4 \cdot 1\right)
$$

$$
=\left(-\frac{32}{5}+\frac{40}{3}-8\right)-\left(-\frac{1}{5}+\frac{5}{3}-4\right)
$$

Example 5 (continued)

$$
\begin{aligned}
A= & A_{1}+A_{2}+A_{3} \\
& =\left[\left(\frac{1}{5}-\frac{5}{3}+4\right)-\left(\frac{32}{5}-\frac{40}{3}+8\right)\right] \\
& +\left[\left(\frac{1}{5}-\frac{5}{3}+4\right)-\left(-\frac{1}{5}+\frac{5}{3}-4\right)\right] \\
& +\left[\left(-\frac{32}{5}+\frac{40}{3}-8\right)-\left(-\frac{1}{5}+\frac{5}{3}-4\right)\right] \\
& =-\frac{60}{5}+\frac{60}{3}=-12+20=8
\end{aligned}
$$

3 OUT OF 2 PEOPLE - HAVEtrouble -WITH FRACTIONS

