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Area Between Two Curves

If f and g are continuous with f(x) = g(x) on
la, b],
then the area of the region bounded above by

y = f(x), below by y = g(x), on the left by the
line x = a and on the right by the linex = b is

b
A= f £ () — (O] dx.

We call A the area of the region between
y = f(x) andy = g(x) from a to b.



Example 1

Find the area of the region betweeny = x + 6
and y = x? from 0 to 2.

Solution:

To determine the top function, the bottom
function, and the limits of integration, it is often
helpful to make a sketch.
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Example 1 (continued)
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Example 2

Find the area of the region
enclosed between
y=x+6andy = x°.

Solution:

First, find where the two
curves meet:

x°=x+6

— N W B & a0 o,
\ =4

x2 — X — 6 — 0 2 -15 -1 -05
(x—=3)(x+2)=0
Xx=3,x=—2



Example 2 (continued)
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Example 3

Find the area of the region
enclosed by the curves

y =4/x,y = —x + 6 and
y = 1.

Solution:

First sketch the curves,
clearly labeling the
Intersection points.
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Example 3 (continued)

Notice that we need to break
this up into two integrals:

4 5
A1=j NE-1ldx=-=3 .
1

5
A2=f [(—x + 6) — 1] dx
4
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Area by Integrating with Respect to y

Sometimes you need to find the area of a region
bounded above and below by horizontal lines
and bounded on the left and right by the graphs
of two functions of y.
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Example 4

Repeat Example 3 by
integrating with respect to

Y.

(Find the area of the
region enclosed by the

curves y = +/x,
y=—x+6andy=1.)




Example 4 (continued)

Solution:

This was much easier since
we did not need to calculate
two different integrals to
find the area.




Example 5

Find the area of the region enclosed by the curves
y =x*—4x%? +4andy = x°.

Solution:

Clearly, y = x* is a parabola with vertex (0,0) that opens
upwards.

y=x*—4x*+4
= (x* —2)*

= (x — \/E)Z(x + \/5)2



Example 5 (continued)

So the only x-intercepts are (—\/Z O) and
(V2,0).

Since y = x* — 4x?% + 4 is a 4th degree
polynomial with a positive leading coefficient,

we know that the shape of the curve will look
like a rounded “W”.

Since the graph only crosses the x-axis at two
points, they must be the bottoms of the “W”.



Example 5 (continued)

But the question is, where do the two curves
intersect?
x* —4x% + 4 = x?
x*—5x24+4=0
(x°—4)(x*-1)=0
(x—2)x+2)(x—1D)(x+1)=0

So the curves intersect when x = 2, x = —2,
x =1and x = —1.



Example 5 (continued)
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Example 5 (continued)

~1
A = f [x? — (x* — 4x% + 4)] dx
2

~1
= f [—x* + 5x% — 4] dx
2
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Example 5 (continued)

1 1
A2=j [(x4—4x2+4)—x2]dx=j [x* — 5x2 + 4] dx
-1 -1

1
1 1
= (—xS —5--x3 +4x>

5 3
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1 1 1 1
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2 2
A3=j [xz—(x4—4x2+4)]dx=f [—x* + 5x2 — 4] dx
1

1
1 1
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Example 5 (continued)
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