Section 5.6

After viewing the lecture videos and reading the textbook, you should be able to answer the following questions:

1. To evaluate the definite integral $\int_{-1}^{1} 3 x^{2} \sqrt{x^{3}+1} d x$, we make the substitution $u=x^{3}+1$ and get

$$
\int_{-1}^{1} 3 x^{2} \sqrt{x^{3}+1} d x=\int_{0}^{2} \sqrt{u} d u
$$

Finish evaluating the definite integral.
2. Use the method of transforming the limits of integration (see the textbook Example 1 Method 1) to evaluate

$$
\int_{-1}^{1} 4 x\left(2 x^{2}+4\right)^{5} d x
$$

3. Use the method of transforming the indefinite integral, integrating, changing back to x, and using the original limits of integration (see the textbook Example 1 Method 2) to evaluate

$$
\int_{-1}^{1} 4 x\left(2 x^{2}+4\right)^{5} d x
$$

4. If f is an even function, then what with the relationship between $f(x)$ and $f(-x)$? If f is an odd function, then what with the relationship between $f(x)$ and $f(-x)$?
5. Is cosine an even or odd function? How about sine, tangent, secant, cosecant, and cotangent?
6. Evaluate $\int_{-\pi / 2}^{\pi / 2} \cos x d x$ and $\int_{-\pi / 2}^{\pi / 2} \sin x d x$.
7. If f and g are continuous with $f(x) \geq g(x)$ on $[a, b]$, then what is the area of the region between the curves $y=f(x)$ and $y=g(x)$ from a to b ?
