Volumes Using Cross-Sections

Part 1
Volumes of Cylinders and Cross
Sections Perpendicular to an Axis

Cylinders

A right cylinder is any solid that can generated by moving a plane region along an axis perpendicular to the region.

Volume of a Cylinder

The volume, V, of a right cylinder is
the area, A, of the plane region
times
the distance, h, that the plan region has moved along the axis.

$$
V=A \cdot h
$$

Volumes of Non-cylinders

To find the volume, V, of an object that is not a right cylinder, we use slicing.

Suppose a solid extends along the x-axis and is bounded on the left and right by planes

perpendicular to the x axis at $x=a$ and $x=b$.

Volumes of Non-cylinders

The cross sections perpendicular to the x axis can vary from point to point.
$A(x)=$ area of the cross section at x

Volumes of Non-cylinders

Let
$P=$
$\left\{a=x_{0}, x_{1}, x_{2}, x_{3}, \cdots, x_{n}=b\right\}$ be a partition of $[a, b]$.

Pass a plane perpendicular to the x-axis through each of the points in P.

These planes cut the solid
 into n slices.

Volumes of Non-cylinders

If the slices are very thin, the cross section is very close to a right cylinder.

To approximate the volume, V_{k}, of the k-th slice, we choose a c_{k} in the k-th subinterval of [a, b].

$$
V_{k} \approx A\left(c_{k}\right) \cdot \Delta x_{k}
$$

Volumes of Non-cylinders

$$
\begin{aligned}
V= & V_{1}+V_{2}+V_{3}+\cdots+V_{n} \\
& \approx \sum_{k=1}^{n} A\left(c_{k}\right) \cdot \Delta x_{k}
\end{aligned}
$$

Therefore,

$$
V=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} A\left(c_{k}\right) \cdot \Delta x_{k}=\int_{a}^{b} A(x) d x
$$

Volumes by Cross Sections Perpendicular to the x-Axis

Let S be a solid bounded by two parallel planes perpendicular to the x-axis at $x=a$ and $x=b$.
If, for each x in $[a, b]$, the cross-sectional area of S perpendicular to the x-axis is $A(x)$, then the volume of the solid is

$$
V=\int_{a}^{b} A(x) d x
$$

provided $A(x)$ is integrable.

Volumes by Cross Sections Perpendicular to the y-Axis

Let S be a solid bounded by two parallel planes perpendicular to the y-axis at $y=c$ and $y=d$. If, for each y in $[c, d]$, the cross-sectional area of S perpendicular to the y-axis is $A(y)$, then the volume of the solid is

$$
V=\int_{c}^{d} A(y) d y
$$

Provided $A(y)$ is integrable.

Example

Derive the formula for the volume of a right pyramid whose altitude is h and whose base is a square with sides of length a.

Example (continued)

Solution:

Introduce a rectangular coordinate system so that the y-axis passes through the apex, and the x-axis passes through the base and is parallel to a side of the base.
At any point y in the interval [$0, h$] on the y-axis the cross section perpendicular to the y-axis is a square.

Example (continued)

$y=$ height of slice
 $s=$ length of side of the
 slice

h and a are constant
By similar triangles

$$
\frac{\frac{1}{2} s}{\frac{1}{2} a}=\frac{h-y}{h}
$$

or

$$
s=\frac{a}{h}(h-y)
$$

Example (continued)

$$
A(y)=\text { area of cross section }
$$

$$
A(y)=s^{2}=\left[\frac{a}{h}(h-y)\right]^{2}
$$

$$
\begin{array}{rl}
V=\int_{0}^{h} & A(y) d y=\int_{0}^{h}\left[\frac{a}{h}(h-y)\right]^{2} d y \\
& =\int_{0}^{h} \frac{a^{2}}{h^{2}}(h-y)^{2} d y=\frac{a^{2}}{h^{2}} \int_{0}^{h}(h-y)^{2} d y \\
& =\left.\frac{a^{2}}{h^{2}} \cdot\left(-\frac{1}{3}\right)(h-y)^{3}\right|_{0} ^{h} \\
& =-\frac{a^{2}}{3 h^{2}}\left[(h-h)^{3}-(h-0)^{3}\right]=\frac{a^{2} h}{3}
\end{array}
$$

