Volumes Using Cross-Sections

Part 2

Disk Method
Washer Method

Volumes of Solids of Revolutions

Let f be non-negative and continuous on $[a, b]$ and let R be the region bounded above by the graph $y=f(x)$ and below by the x-axis and on the sides by the lines $x=a$ and $x=b$.

Volumes of Solids of Revolutions

Revolve this region about the x-axis to generate a solid having circular cross sections.
Since the cross section at x has radius $f(x)$,
the cross-sectional area is

$$
\begin{gathered}
A(x)=\pi[\text { radius }]^{2} \\
A(x)=\pi[f(x)]^{2}
\end{gathered}
$$

Method of Disks

Let f be non-negative and continuous on $[a, b]$ and let R be the region bounded above by the graph $y=f(x)$ and below by the x-axis and on the sides by the lines $x=a$ and $x=b$.
Then the volume of the solid generated by revolving this region about the x-axis is

$$
V=\int_{a}^{b} A(x) d x=\int_{a}^{b} \pi[f(x)]^{2} d x
$$

Example 1

Find the volume of the solid obtained when the region under $y=\sqrt{x}$ over $[0,4]$ is revolved about the x-axis.

Solution:

First sketch the region to be revolved, draw the radius (slice) at x and indicate the
 direction of rotation.

Example 1 (continued)

$$
\begin{aligned}
V & =\int_{a}^{b} \pi[f(x)]^{2} d x \\
& =\int_{0}^{4} \pi[\sqrt{x}]^{2} d x \\
& =\int_{0}^{4} \pi x d x \\
& =\left.\frac{\pi}{2} x^{2}\right|_{0} ^{4} \\
& =\frac{\pi}{2} \cdot 4^{2}-\frac{\pi}{2} \cdot 0^{2}=8 \pi
\end{aligned}
$$

Example 2

Derive the formula for the volume of a sphere of radius r.

Solution:

A sphere is the upper semi-circle revolved about the x-axis.

Example 2 (continued)

$$
\begin{aligned}
V= & \int_{a}^{b} \pi[f(x)]^{2} d x \\
& =\int_{-r}^{r} \pi\left[\sqrt{r^{2}-x^{2}}\right]^{2} d x \\
= & 2 \int_{0}^{r} \pi\left(r^{2}-x^{2}\right) d x \\
= & \left.2 \pi\left(r^{2} x-\frac{1}{3} x^{3}\right)\right|_{0} ^{r} \\
= & 2 \pi\left(r^{2} r-\frac{1}{3} r^{3}\right) \\
& \quad-2 \pi\left(r^{2} \cdot 0-\frac{1}{3} \cdot 0^{3}\right) \\
= & \frac{4}{3} \pi r^{3}
\end{aligned}
$$

Volumes of Solids of Revolutions

Suppose f and g are nonnegative continuous functions such that $g(x) \leq f(x)$ on $[a, b]$. Let R be the region enclosed between the graphs of these functions and the lines $x=a$ and $x=b$.

Volumes of Solids of Revolutions

Revolve this region about the x-axis.
Since the cross section at x has inner radius $g(x)$ and outer radius $f(x)$,
its area is
A(x)

$$
\begin{aligned}
& =\pi[f(x)]^{2}-\pi[g(x)]^{2} \\
& =\pi\left([f(x)]^{2}-[g(x)]^{2}\right)
\end{aligned}
$$

Method of Washers

Let f and g be non-negative and continuous with $g(x) \leq f(x)$ on $[a, b]$ and let R be the region bounded above by the graph $y=f(x)$ and below by the graph $y=g(x)$ and on the sides by the lines $x=a$ and $x=b$.
Then the volume of the solid generated by revolving this region about the x-axis is

$$
V=\int_{a}^{b} A(x) d x=\int_{a}^{b} \pi\left([f(x)]^{2}-[g(x)]^{2}\right) d x
$$

Example 3

Find the volume of the solid generated when the region between the
graphs of $f(x)=\frac{1}{2}+x^{2}$ and $g(x)=x$ over $[0,2]$ is revolved about the x-axis.

Solution:

First, sketch the region.

Example 3 (continued)

$$
\begin{aligned}
V= & \int_{a}^{b} \pi\left([f(x)]^{2}-[g(x)]^{2}\right) d x \\
& =\int_{0}^{2} \pi\left(\left[\frac{1}{2}+x^{2}\right]^{2}-[x]^{2}\right) d x \\
& =\int_{0}^{2} \pi\left(\frac{1}{4}+x^{2}+x^{4}-x^{2}\right) d x \\
& =\int_{0}^{2} \pi\left(\frac{1}{4}+x^{4}\right) d x \\
& =\cdots=\frac{69 \pi}{10}
\end{aligned}
$$

Revolving about the y-axis

Disk Method:

$$
V=\int_{c}^{d} \pi[u(y)]^{2} d y
$$

Washer Method:

$$
\begin{aligned}
& V= \int_{c}^{d} \pi\left([u(y)]^{2}\right. \\
&\left.\quad-[v(y)]^{2}\right) d y
\end{aligned}
$$

Example 4

Find the volume of the solid generated when the region enclosed by $y=\sqrt{x}, y=2$, and $x=0$ is revolved about the y axis.

Solution:

First, sketch the region to be revolved.

Example 4 (continued)

Since we are revolving about the y-axis, we need to re-write the equations as functions of y.

$$
y=\sqrt{x} \Rightarrow x=y^{2}
$$

Notice that this is a disk method problem.

$$
\begin{aligned}
V= & \int_{c}^{d} \pi[u(y)]^{2} d y \\
& =\int_{0}^{2} \pi\left[y^{2}\right]^{2} d y=\int_{0}^{2} \pi y^{4} d y \\
& =\cdots=\frac{32 \pi}{5}
\end{aligned}
$$

Disk/Washer Method Hints

- Always sketch the graphs, noting any x intercepts and intersections
- If revolving about the x-axis:
- The slices are perpendicular to the x-axis
- Integrate with respect to x
- If revolving about the y-axis:
- The slices are perpendicular to the y-axis
- Integrate with respect to y

http://shirtshovel.com/math-snakesonaplane.shtml

