Volumes Using Cylindrical Shells

Volume of a Shell

Volume of outer cylinder

- Volume of inner cylinder

$$
\begin{aligned}
& =\pi r_{2}^{2} h-\pi r_{1}^{2} h \\
& =\pi h\left(r_{2}^{2}-r_{1}^{2}\right) \\
& =\pi h\left(r_{2}+r_{1}\right)\left(r_{2}-r_{1}\right) \\
& =2 \pi\left(\frac{r_{2}+r_{1}}{2}\right) h\left(r_{2}-r_{1}\right) \\
& =2 \pi(\text { average } \\
& \text { radius })(\text { height })(\text { thickness })
\end{aligned}
$$

Revolve $y=f(x)$ about the y-axis

Revolve $y=f(x)$ about the y-axis

On each slice: average radius

$$
=\frac{x_{k}+x_{k-1}}{2}=c_{k}
$$

$$
\text { height }=f\left(c_{k}\right)
$$

thickness $=\Delta x_{k}$

$$
V_{k} \approx 2 \pi c_{k} f\left(c_{k}\right) \Delta x_{k}
$$

Method of Cylindrical Shells

$$
\begin{gathered}
V=\sum_{k=1}^{n} V_{k} \approx \sum_{k=1}^{n} 2 \pi c_{k} f\left(c_{k}\right) \Delta x_{k} \\
V=\int_{a}^{b} 2 \pi x f(x) d x \\
V=\int_{a}^{b} 2 \pi(\text { radius)(height) } d x
\end{gathered}
$$

Surface area of a cylinder

Revolve $y=f(x)$ about $x=L$

$$
\begin{aligned}
& V \\
& =\int_{a}^{b} 2 \pi(\text { radius })(\text { height }) d x \\
& \quad=\int_{a}^{b} 2 \pi|x-L| f(x) d x
\end{aligned}
$$

Example 1

Use cylindrical shells to find the volume of the solid generated when the region enclosed between $y=\sqrt{x}, x=1, x=4$ and the x-axis is revolved about the y-axis.

Solution:

Sketch the curve.

Example 1 (continued)

Example 2

Redo Example 1 using the Washer Method.
(Find the volume of the solid generated when the region enclosed between $y=\sqrt{x}$, $x=1, x=4$ and the x-axis is revolved about the y axis.)

Solution:

Sketch the curve.

Example 2 (continued)

$$
\begin{aligned}
V= & \int_{0}^{1} \pi\left(4^{2}-1^{2}\right) d y \\
& \quad+\int_{1}^{2} \pi\left(4^{2}-\left(y^{2}\right)^{2}\right) d y \\
=\cdots & =\frac{124 \pi}{5}
\end{aligned}
$$

Example 3

Use cylindrical shells to find the volume of the solid generated when the region R in the first quadrant enclosed between $y=x$ and $y=x^{2}$ is revolved about the y-axis.

Solution:
Sketch region to be
 revolved.

Example 3 (continued)

Example 4

(Revolve $x=u(y)$ about the x-axis)

Use cylindrical shells to find the volume of the solid generated when the region R under $y=x^{2}$ over the interval [0,2] is revolved about the x-axis.

Solution:

Sketch region to be
 revolved.

Example 4 (continued)

http://www.cartoonstock.com/directory/p/pi_symbols.asp

