Arc Length

Part 1

Arc Length

Goal:

Find the arc length of a plane curve.

To start, we will consider only smooth curves.

Smooth

If a function f has a continuous derivative on an interval $[a, b]$ then f is smooth.

The graph of a smooth curve does not have any breaks, corners, or cusps.

Arc Length

Let f be a smooth function on [a, b],
$P=$
$\left\{a=x_{0}, x_{1}, x_{2}, \cdots, x_{n-1}, x_{n}=b\right\}$ be a partition of $[a, b]$
and let L be how long the curve is from $x=a$ to $x=b$.

Then, on the k-th subinterval of [a, b] we have:

$$
L_{k}=\sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}}
$$

Arc Length

$$
L_{k}=\sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}}
$$

$$
\begin{aligned}
& =\sqrt{\left(\Delta x_{k}\right)^{2}\left(1+\left(\frac{\Delta y_{k}}{\Delta x_{k}}\right)^{2}\right)} \\
& =\Delta x_{k} \sqrt{1+\left(\frac{\Delta y_{k}}{\Delta x_{k}}\right)^{2}} \\
& \approx \Delta x_{k} \sqrt{1+\left(f^{\prime}\left(c_{k}\right)\right)^{2}}
\end{aligned}
$$

Arc Length

$$
\begin{aligned}
L & \approx \sum_{k=1}^{n} \Delta x_{k} \sqrt{1+\left(f^{\prime}\left(c_{k}\right)\right)^{2}} \\
& =\sum_{k=1}^{n} \sqrt{1+\left(f^{\prime}\left(c_{k}\right)\right)^{2}} \cdot \Delta x_{k}
\end{aligned}
$$

This is just a Riemann sum for the function $\sqrt{1+\left(f^{\prime}(x)\right)^{2}}$ on the interval $[a, b]$.

Definition of Arc Length

Let f be a smooth function on $[a, b]$. Then the arc length of $y=f(x)$ from $x=a$ to $x=b$ is

$$
L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Similarly, if $x=g(y)$ is a smooth function on $[c, d]$, then the arc length of $x=g(y)$ from $y=c$ to $y=d$ is

$$
L=\int_{c}^{d} \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y
$$

Example

Find the arc length of the curve $y=x^{3 / 2}$ from the point $(1,1)$ to the point $(2,2 \sqrt{2})$.

Solution:

We will solve this in two ways:

Example - Method 1

Method 1: \quad from $(1,1)$ to $(2,2 \sqrt{2})$

$$
y=x^{3 / 2} \Rightarrow \frac{d y}{d x}=\frac{3}{2} x^{1 / 2}
$$

$$
\begin{aligned}
L=\int_{a}^{b} & \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \\
& =\int_{1}^{2} \sqrt{1+\left(\frac{3}{2} x^{1 / 2}\right)^{2}} d x \\
& =\int_{1}^{2} \sqrt{1+\frac{9}{4} x} d x
\end{aligned}
$$

Example - Method 1 (continued)

$$
L=\int_{1}^{2} \sqrt{1+\frac{9}{4}} x d x
$$

$$
\begin{gathered}
u=1+\frac{9}{4} x \\
d u=\frac{9}{4} d x \Rightarrow \frac{4}{9} d u=d x \\
x=2 \Rightarrow u=1+\frac{9}{4} \cdot 2=\frac{11}{2} \\
x=1 \Rightarrow u=1+\frac{9}{4} \cdot 1=\frac{13}{4}
\end{gathered}
$$

Example - Method 1 (continued)

$$
\begin{aligned}
L & =\int_{1}^{2} \sqrt{1+\frac{9}{4}} x d x \\
& =\int_{13 / 4}^{11 / 2} \sqrt{u} \cdot \frac{4}{9} d u \\
=\cdots & =\frac{22 \sqrt{22}-13 \sqrt{13}}{27}
\end{aligned}
$$

Example - Method 2

Method 2:
from $(1,1)$ to $(2,2 \sqrt{2})$

$$
y=x^{3 / 2} \Rightarrow x=y^{2 / 3} \Rightarrow \frac{d x}{d y}=\frac{2}{3} y^{-1 / 3}
$$

$L=\int_{c}^{d} \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y$

$$
\begin{aligned}
& =\int_{1}^{2 \sqrt{2}} \sqrt{1+\left(\frac{2}{3} y^{-1 / 3}\right)^{2}} d y \\
& =\int_{1}^{2 \sqrt{2}} \sqrt{1+\frac{4}{9} y^{-2 / 3}} d y
\end{aligned}
$$

Example - Method 2 (continued)

$$
\begin{aligned}
L & =\int_{1}^{2 \sqrt{2}} \sqrt{y^{-2 / 3}\left(y^{2 / 3}+\frac{4}{9}\right)} d y \\
& =\int_{1}^{2 \sqrt{2}} y^{-1 / 3} \sqrt{y^{2 / 3}+\frac{4}{9}} d y
\end{aligned}
$$

$$
\begin{gathered}
u=y^{2 / 3}+\frac{4}{9} \\
d u=\frac{2}{3} y^{-1 / 3} d y \Rightarrow \frac{3}{2} d u=y^{-1 / 3} d y \\
y=2 \sqrt{2} \Rightarrow u=(2 \sqrt{2})^{2 / 3}+\frac{4}{9}=\left(2^{3 / 2}\right)^{2 / 3}+\frac{4}{9}=2+\frac{4}{9}=\frac{22}{9} \\
y=1 \Rightarrow u=(1)^{2 / 3}+\frac{4}{9}=1+\frac{4}{9}=\frac{13}{9}
\end{gathered}
$$

Example - Method 2 (continued)

$$
\begin{aligned}
L= & \int_{1}^{2 \sqrt{2}} y^{-1 / 3} \sqrt{y^{2 / 3}+\frac{4}{9}} d y \\
& =\int_{13 / 9}^{22 / 9} \sqrt{u} \cdot \frac{3}{2} d u \\
= & \cdots=\frac{22 \sqrt{22}-13 \sqrt{13}}{27}
\end{aligned}
$$

http://thecomicninja.wordpress.com/tag/math/

