Areas of Surfaces of Revolution

Surface Area

Let f be a smooth, nonnegative function on an interval $[a, b]$.

Problem:

Find the area of the surface generated by revolving the curve $y=f(x)$ about the x-axis.

Surface Area

Let f be a nonnegative, smooth function on $[a, b]$,

and
$P=$
$\left\{a=x_{0}, x_{1}, x_{2}, \cdots, x_{n-1}, x_{n}=b\right\}$
be a partition of $[a, b]$.

A slice of the surface generated
by revolving the curve about the
x-axis is like a frustum (the
portion of a solid that lies
between two parallel planes
cutting it) of a cone.

Surface Area

The lateral area of the frustum can be obtained from the formula

$$
\pi\left(f\left(x_{k-1}\right)+f\left(x_{k}\right)\right) \cdot l
$$

where l is the slant height (that is, l is the distance between the points
$\left(x_{k-1}, f\left(x_{k-1}\right)\right)$ and $\left.\left(x_{k}, f\left(x_{k}\right)\right)\right)$.

Surface Area

$$
\begin{gathered}
S_{k} \approx \pi\left(f\left(x_{k-1}\right)+f\left(x_{k}\right)\right) \cdot l \\
=\pi\left(f\left(x_{k-1}\right)+f\left(x_{k}\right)\right) \sqrt{\left(\Delta x_{k}\right)^{2}+\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right)^{2}}
\end{gathered}
$$

By the Mean-Value Theorem, there is a point c_{k} between x_{k-1} and x_{k} such that

$$
\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}=f^{\prime}\left(c_{k}\right)
$$

or

$$
f\left(x_{k}\right)-f\left(x_{k-1}\right)=f^{\prime}\left(c_{k}\right) \Delta x_{k}
$$

This gives us

$$
\begin{aligned}
S_{k} & \approx \pi\left(f\left(x_{k-1}\right)+f\left(x_{k}\right)\right) \sqrt{\left(\Delta x_{k}\right)^{2}+\left(f^{\prime}\left(c_{k}\right) \Delta x_{k}\right)^{2}} \\
& =\pi\left(f\left(x_{k-1}\right)+f\left(x_{k}\right)\right) \sqrt{1+\left(f^{\prime}\left(c_{k}\right)\right)^{2}} \cdot \Delta x_{k}
\end{aligned}
$$

Surface Area

Now

$$
\frac{1}{2}\left(f\left(x_{k-1}\right)+f\left(x_{k}\right)\right)
$$

is between $f\left(x_{k-1}\right)$ and $f\left(x_{k}\right)$.
By the Intermediate Value Theorem, we know that there exists a d_{k} in $\left[x_{k-1}, x_{k}\right]$ such that

$$
\frac{1}{2}\left(f\left(x_{k-1}\right)+f\left(x_{k}\right)\right)=f\left(d_{k}\right)
$$

Surface Area

$$
\begin{gathered}
S_{k} \approx \pi\left(f\left(x_{k-1}\right)+f\left(x_{k}\right)\right) \sqrt{1+\left(f^{\prime}\left(c_{k}\right)\right)^{2}} \cdot \Delta x_{k} \\
=2 \pi f\left(d_{k}\right) \sqrt{1+\left(f^{\prime}\left(c_{k}\right)\right)^{2}} \cdot \Delta x_{k}
\end{gathered}
$$

That means that the total surface area, S, is approximately
$S=\sum_{k=1}^{n} S_{k} \approx \sum_{k=1}^{n} 2 \pi f\left(d_{k}\right) \sqrt{1+\left(f^{\prime}\left(c_{k}\right)\right)^{2}} \cdot \Delta x_{k}$

Surface Area

We expect that

$$
S=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} 2 \pi f\left(d_{k}\right) \sqrt{1+\left(f^{\prime}\left(c_{k}\right)\right)^{2}} \cdot \Delta x_{k}
$$

If $c_{k}=d_{k}$, then this would be the definite integral

$$
\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

It can be proved (not by us now) that the limit is indeed the definite integral even if $c_{k} \neq d_{k}$.

Surface Area Definition

Let f be a nonnegative, smooth function on $[a, b]$. Then the surface area S generated by revolving the portion of the curve $y=f(x)$ between $x=a$ and $x=b$ about the x-axis is

$$
S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Let $x=g(y)$ be a nonnegative, smooth function on $[c, d]$. Then the surface area S generated by revolving the portion of the curve $x=g(y)$ between $y=c$ and $y=d$ about the y axis is

$$
S=\int_{c}^{d} 2 \pi g(y) \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y
$$

Example 1

Find the surface area generated by revolving the curve

$$
y=\sqrt{1-x^{2}}, \quad 0 \leq x \leq \frac{1}{2}
$$

about the x-axis.

Solution:

The graph of the curve is the upper semi-circle of radius 1 centered at the origin.

Example 1 (continued)

Example 2

Find the surface area generated by revolving the curve

$$
y=\sqrt[3]{3 x}, \quad 0 \leq y \leq 2
$$

about the y-axis.

Solution:

$$
\begin{gathered}
y=\sqrt[3]{3 x} \Rightarrow x=\frac{1}{3} y^{3} \\
\frac{d x}{d y}=y^{2}
\end{gathered}
$$

Example 2 (continued)

$$
\begin{gathered}
S=\int_{c}^{d} 2 \pi g(y) \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y \\
=\int_{0}^{2} 2 \pi\left(\frac{1}{3} y^{3}\right) \sqrt{1+\left(y^{2}\right)^{2}} d y \\
=\int_{0}^{2} \frac{2 \pi}{3} y^{3} \sqrt{1+y^{4}} d y \\
u=1+y^{4} \\
d u=4 y^{3} d y \Rightarrow \frac{1}{4} d u=y^{3} d y \\
y=2 \Rightarrow u=17 \\
y=0 \Rightarrow u=1
\end{gathered}
$$

Example 2 (continued)

$$
\begin{aligned}
S & =\int_{0}^{2} \frac{2 \pi}{3} y^{3} \sqrt{1+y^{4}} d y \\
& =\int_{1}^{17} \frac{2 \pi}{3} \sqrt{u} \cdot \frac{1}{4} d u \\
& =\cdots=\frac{\pi}{9}(17 \sqrt{17}-1)
\end{aligned}
$$

http://thecomicninja.wordpress.com/tag/math/

