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Rational Functions 

Recall that a rational function is the quotient of two 
polynomials. 
1
𝑥

+
3

𝑥 − 1
+

2
𝑥 + 2

 

=
1 𝑥 − 1 𝑥 + 2 + 3𝑥 𝑥 + 2 + 2𝑥 𝑥 − 1

𝑥 𝑥 − 1 𝑥 + 2
 

=
6𝑥2 + 5𝑥 − 2
𝑥3 + 𝑥2 − 2𝑥

 

The left side of this equation is easy to integrate. 
The right side is hard to integrate. 
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Rational Functions 

Suppose 𝑝 𝑥  and 𝑞 𝑥  are polynomials and 

𝑓 𝑥 =
𝑝 𝑥
𝑞 𝑥

. 

• If the degree of 𝑝 𝑥  is less than the degree of 
𝑞 𝑥 , then 𝑓 𝑥  is a proper rational function. 

• If the degree of 𝑝 𝑥  is greater than or equal 
to the degree of 𝑞 𝑥 , then 𝑓 𝑥  is an 
improper rational function. 
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Partial Fraction Decomposition 

In theory, a polynomial with real coefficients can 
always be factored into a product of linear and 
quadratic factors. 
If a quadratic factor cannot be further decomposed 
into linear factors, then it is said to be irreducible. 
It can be proved that any proper rational function is 
expressible as a sum of terms (called partial 
fractions) having the form: 

𝐴
𝑎𝑥 + 𝑏 𝑘  or 

𝐵𝑥 + 𝐶
𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑘 . 
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Steps to Partial Fraction 
Decomposition 

Suppose 𝑝 𝑥  and 𝑞 𝑥  are polynomials and 

𝑓 𝑥 =
𝑝 𝑥
𝑞 𝑥

. 

• Completely factor the denominator 𝑞 𝑥  into 
linear and irreducible quadratic factors. 

• Collect all repeated factors so that 𝑞 𝑥  is 
expressed as a product of distinct factors of the 
form 

𝑎𝑥 + 𝑏 𝑚 and 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑚 
where 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑚 is irreducible. 
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Steps to Partial Fraction 
Decomposition (continued) 

• The structure of 𝑝 𝑥
𝑞 𝑥

 is determined as follows: 

Linear Factors 
For each factor of the form 𝑎𝑥 + 𝑏 𝑚, 
introduce the 𝑚 terms 

𝐴1
𝑎𝑥 + 𝑏

+
𝐴2

𝑎𝑥 + 𝑏 2 + ⋯+
𝐴𝑚

𝑎𝑥 + 𝑏 𝑚 

where 𝐴1,𝐴2,⋯ ,𝐴𝑚 are constants to be 
determined. 
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Steps to Partial Fraction 
Decomposition (continued) 

Irreducible Quadratic Factors 
For each factor of the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑚, 
introduce the 𝑚 terms 

𝐴1𝑥 + 𝐵1
𝑎𝑥2 + 𝑏𝑥 + 𝑐

+
𝐴2𝑥 + 𝐵2

𝑎𝑥2 + 𝑏𝑥 + 𝑐 2 + ⋯

+
𝐴𝑚𝑥 + 𝐵𝑚

𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑚 

where 𝐴1,𝐴2,⋯ ,𝐴𝑚,𝐵1,𝐵2,⋯ ,𝐵𝑚are 
constants to be determined. 
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Example 1 
(1) 1

𝑥−1 2 𝑥+3 3 𝑥2+𝑥+1 2 
 

=
𝐴

𝑥 − 1 +
𝐵

𝑥 − 1 2 +
𝐶

𝑥 + 3 +
𝐷

𝑥 + 3 2 +
𝐸

𝑥 + 3 3

+
𝐹𝑥 + 𝐺

𝑥2 + 𝑥 + 1 +
𝐻𝑥 + 𝐼

𝑥2 + 𝑥 + 1 2 

 
(2) 5𝑥+4

𝑥2 𝑥2+4
 

 

=
𝐴
𝑥 +

𝐵
𝑥2 +

𝐶𝑥 + 𝐷
𝑥2 + 4  
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Example 2 

Evaluate 

�
1

𝑥2 + 𝑥 − 2
𝑑𝑥 

 
Solution: 

1
𝑥2 + 𝑥 − 2

=
1

𝑥 − 1 𝑥 + 2
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Example 2 (continued) 

1
𝑥 − 1 𝑥 + 2

=
𝐴

𝑥 − 1
+

𝐵
𝑥 + 2

 

Now, multiply both sides of the equation by 
𝑥 − 1 𝑥 + 2  to get 

1 = 𝐴 𝑥 + 2 + 𝐵 𝑥 − 1  
To solve for 𝐴 and 𝐵, substitute values of 𝑥 to 
make the various terms zero. 
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Example 2 (continued) 

1 = 𝐴 𝑥 + 2 + 𝐵 𝑥 − 1   
Setting 𝑥 = −2 gives us: 

1 = 𝐴 −2 + 2 + 𝐵 −2 − 1  
1 = −3𝐵 

−
1
3

= 𝐵 

Setting 𝑥 = 1 gives us: 
1 = 𝐴 1 + 2 + 𝐵 1 − 1  

1 = 3𝐴 
1
3

= 𝐴 
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Example 2 (continued) 
An alternate way to solve for 𝐴 and 𝐵 is: 
 
Take the equation 

1 = 𝐴 𝑥 + 2 + 𝐵 𝑥 − 1  
Equate corresponding coefficients on both sides 

1 = 𝐴𝑥 + 2𝐴 + 𝐵𝑥 − 𝐵 
0𝑥 + 1 = 𝐴 + 𝐵 𝑥 + 2𝐴 − 𝐵  

� 𝐴 + 𝐵 = 0
2𝐴 − 𝐵 = 1 

Solve the system of equations to get 

𝐴 =
1
3

 and 𝐵 = −
1
3

. 
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Example 2 (continued) 
Since 

1
𝑥 − 1 𝑥 + 2

=
𝐴

𝑥 − 1
+

𝐵
𝑥 + 2

 

=
1 3⁄
𝑥 − 1

+
− 1 3⁄
𝑥 + 2

 

we can now say 

�
1

𝑥 − 1 𝑥 + 2 𝑑𝑥 =
1
3
�

1
𝑥 − 1𝑑𝑥 −

1
3
�

1
𝑥 + 2𝑑𝑥 

=
1
3

ln 𝑥 − 1 −
1
3

ln 𝑥 + 2 + 𝐶 

 

=
1
3

ln
𝑥 − 1
𝑥 + 2

+ 𝐶 
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Example 3 

Evaluate 

�
3𝑥4 + 3𝑥3 − 5𝑥2 + 𝑥 − 1

𝑥2 + 𝑥 − 2
𝑑𝑥 

 
Solution: 
Since the degree of the numerator is larger than 
the degree of the denominator, this is an 
improper rational function! 
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Example 3 (continued) 

When you have an improper rational function, the 
first thing you need to do is long division of 
polynomials to rewrite the improper rational 
function as the sum of a polynomial and a proper 
rational function. 
Using long division of polynomials we get: 

3𝑥4 + 3𝑥3 − 5𝑥2 + 𝑥 − 1
𝑥2 + 𝑥 − 2

= 3𝑥2 + 1 +
1

𝑥2 + 𝑥 − 2
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Example 3 (continued) 

�
3𝑥4 + 3𝑥3 − 5𝑥2 + 𝑥 − 1

𝑥2 + 𝑥 − 2
𝑑𝑥

= � 3𝑥2 + 1 𝑑𝑥 + �
1

𝑥2 + 𝑥 − 2
𝑑𝑥 

 

= 𝑥3 + 𝑥 +
1
3

ln
𝑥 − 1
𝑥 + 2

+ 𝐶 
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The perfect human interaction for people who are afraid of germs. 

The perfect human interaction for people who are afraid of germs. 
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