# Integration of Rational Functions by Partial Fractions 

Part 2:<br>Integrating Rational Functions

## Rational Functions

Recall that a rational function is the quotient of two polynomials.

$$
\begin{aligned}
& \frac{1}{x}+\frac{3}{x-1}+\frac{2}{x+2} \\
&=\frac{1(x-1)(x+2)+3 x(x+2)+2 x(x-1)}{x(x-1)(x+2)} \\
&=\frac{6 x^{2}+5 x-2}{x^{3}+x^{2}-2 x}
\end{aligned}
$$

The left side of this equation is easy to integrate.
The right side is hard to integrate.

## Rational Functions

Suppose $p(x)$ and $q(x)$ are polynomials and

$$
f(x)=\frac{p(x)}{q(x)}
$$

- If the degree of $p(x)$ is less than the degree of $q(x)$, then $f(x)$ is a proper rational function.
- If the degree of $p(x)$ is greater than or equal to the degree of $q(x)$, then $f(x)$ is an improper rational function.


## Partial Fraction Decomposition

In theory, a polynomial with real coefficients can always be factored into a product of linear and quadratic factors.
If a quadratic factor cannot be further decomposed into linear factors, then it is said to be irreducible.
It can be proved that any proper rational function is expressible as a sum of terms (called partial fractions) having the form:

$$
\frac{A}{(a x+b)^{k}} \text { or } \frac{B x+C}{\left(a x^{2}+b x+c\right)^{k}}
$$

## Steps to Partial Fraction Decomposition

Suppose $p(x)$ and $q(x)$ are polynomials and

$$
f(x)=\frac{p(x)}{q(x)} .
$$

- Completely factor the denominator $q(x)$ into linear and irreducible quadratic factors.
- Collect all repeated factors so that $q(x)$ is expressed as a product of distinct factors of the form

$$
(a x+b)^{m} \text { and }\left(a x^{2}+b x+c\right)^{m}
$$

where $\left(a x^{2}+b x+c\right)^{m}$ is irreducible.

## Steps to Partial Fraction Decomposition (continued)

- The structure of $\frac{p(x)}{q(x)}$ is determined as follows:


## Linear Factors

For each factor of the form $(a x+b)^{m}$, introduce the $m$ terms

$$
\frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\cdots+\frac{A_{m}}{(a x+b)^{m}}
$$

where $A_{1}, A_{2}, \cdots, A_{m}$ are constants to be determined.

## Steps to Partial Fraction Decomposition (continued)

## Irreducible Quadratic Factors

For each factor of the form $\left(a x^{2}+b x+c\right)^{m}$, introduce the $m$ terms

$$
\begin{aligned}
& \frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots \\
& \quad+\frac{A_{m} x+B_{m}}{\left(a x^{2}+b x+c\right)^{m}}
\end{aligned}
$$

where $A_{1}, A_{2}, \cdots, A_{m}, B_{1}, B_{2}, \cdots, B_{m}$ are constants to be determined.

## Example 1

${ }^{(1)} \frac{1}{(x-1)^{2}(x+3)^{3}\left(x^{2}+x+1\right)^{2}}$

$$
\begin{aligned}
& =\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x+3}+\frac{D}{(x+3)^{2}}+\frac{E}{(x+3)^{3}} \\
& +\frac{F x+G}{x^{2}+x+1}+\frac{H x+I}{\left(x^{2}+x+1\right)^{2}}
\end{aligned}
$$

(2) $\frac{5 x+4}{x^{2}\left(x^{2}+4\right)}$

$$
=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+4}
$$

## Example 2

Evaluate

$$
\int \frac{1}{x^{2}+x-2} d x
$$

## Solution:

$$
\frac{1}{x^{2}+x-2}=\frac{1}{(x-1)(x+2)}
$$

## Example 2 (continued)

$$
\frac{1}{(x-1)(x+2)}=\frac{A}{x-1}+\frac{B}{x+2}
$$

Now, multiply both sides of the equation by $(x-1)(x+2)$ to get

$$
1=A(x+2)+B(x-1)
$$

To solve for $A$ and $B$, substitute values of $x$ to make the various terms zero.

## Example 2 (continued)

$$
1=A(x+2)+B(x-1)
$$

Setting $x=-2$ gives us:

$$
\begin{gathered}
1=A(-2+2)+B(-2-1) \\
1=-3 B \\
-\frac{1}{3}=B
\end{gathered}
$$

Setting $x=1$ gives us:

$$
\begin{gathered}
1=A(1+2)+B(1-1) \\
1=3 A \\
\frac{1}{3}=A
\end{gathered}
$$

## Example 2 (continued)

An alternate way to solve for $A$ and $B$ is:

Take the equation

$$
1=A(x+2)+B(x-1)
$$

Equate corresponding coefficients on both sides

$$
\begin{gathered}
1=A x+2 A+B x-B \\
0 x+1=(A+B) x+(2 A-B) \\
\left\{\begin{array}{c}
A+B=0 \\
2 A-B=1
\end{array}\right.
\end{gathered}
$$

Solve the system of equations to get

$$
A=\frac{1}{3} \text { and } B=-\frac{1}{3}
$$

## Example 2 (continued)

Since

$$
\begin{gathered}
\frac{1}{(x-1)(x+2)}=\frac{A}{x-1}+\frac{B}{x+2} \\
=\frac{1 / 3}{x-1}+\frac{-1 / 3}{x+2}
\end{gathered}
$$

we can now say

$$
\begin{aligned}
& \int \frac{1}{(x-1)(x+2)} d x=\frac{1}{3} \int \frac{1}{x-1} d x-\frac{1}{3} \int \frac{1}{x+2} d x \\
&= \frac{1}{3} \ln |x-1|-\frac{1}{3} \ln |x+2|+C \\
&= \frac{1}{3} \ln \left|\frac{x-1}{x+2}\right|+C
\end{aligned}
$$

## Example 3

Evaluate

$$
\int \frac{3 x^{4}+3 x^{3}-5 x^{2}+x-1}{x^{2}+x-2} d x
$$

Solution:
Since the degree of the numerator is larger than the degree of the denominator, this is an improper rational function!

## Example 3 (continued)

When you have an improper rational function, the first thing you need to do is long division of polynomials to rewrite the improper rational function as the sum of a polynomial and a proper rational function.
Using long division of polynomials we get:

$$
\begin{aligned}
& \frac{3 x^{4}+3 x^{3}-5 x^{2}+x-1}{x^{2}+x-2} \\
& \quad=\left(3 x^{2}+1\right)+\frac{1}{x^{2}+x-2}
\end{aligned}
$$

## Example 3 (continued)

$$
\begin{aligned}
& \int \frac{3 x^{4}+3 x^{3}-5 x^{2}+x-1}{x^{2}+x-2} d x \\
& \quad=\int\left(3 x^{2}+1\right) d x+\int \frac{1}{x^{2}+x-2} d x
\end{aligned}
$$

See Example 2

$$
=x^{3}+x+\frac{1}{3} \ln \left|\frac{x-1}{x+2}\right|+C
$$



The perfect human interaction for people who are afraid of germs.

