Numerical Integration

Part 2:

Simpson's Rule

Areas Using Parabolas

It can be shown that the area, A, under the curve of a parabola, $y=f(x)$, on the interval $\left[X_{0}, X_{2}\right.$] of width $2 h$ is equal to

$$
A=\frac{h}{3}\left(Y_{0}+4 Y_{1}+Y_{2}\right)
$$

where X_{1} is the midpoint of the interval and

$$
Y_{k}=f\left(X_{k}\right)
$$

Areas Using Parabolas

Let $y=f(x)$ be a
continuous function on
[a, b].
Divide $[a, b]$ into an even number, n, of subintervals of width $h=\frac{b-a}{n}$.
Let A_{p} represent the area of the $(2 p-1)$-st slice plus the area of the $2 p$-th slice.

(So, $p=1,2,3, \cdots, \frac{n}{2}$.)

Areas Using Parabolas

Then, by approximating with parabolas,

$$
\begin{aligned}
& \begin{array}{l}
A_{p} \approx \frac{h}{3}\left(y_{2 p-2}+4 y_{2 p-1}\right. \\
\\
\left.+y_{2 p}\right)
\end{array} \\
& \text { where } y_{k}=f\left(x_{k}\right) .
\end{aligned}
$$

Areas Using Parabolas

Adding these approximations together, we get that the area, A, under the curve $y=f(x)$ on $[a, b]$ is approximately:
$A=A_{1}+A_{2}+\cdots+A_{n / 2}$

$$
\begin{aligned}
& \approx \frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right)+\frac{h}{3}\left(y_{2}+4 y_{3}+y_{4}\right)+\cdots+\frac{h}{3}\left(y_{n-2}+4 y_{n-1}+y_{n}\right) \\
& =\frac{h}{3}\left[\left(y_{0}+4 y_{1}+y_{2}\right)+\left(y_{2}+4 y_{3}+y_{4}\right)+\cdots+\left(y_{n-2}+4 y_{n-1}+y_{n}\right)\right] \\
& =\frac{h}{3}\left[y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+\cdots+2 y_{n-2}+4 y_{n-1}+y_{n}\right]
\end{aligned}
$$

Simpson's Rule

To approximate $\int_{a}^{b} f(x) d x$, use
$S=\frac{\Delta x}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+\cdots+2 y_{n-2}+4 y_{n-1}+y_{n}\right)$.
where
n is even

$$
\begin{gathered}
\Delta x=\frac{b-a}{n} \\
x_{k}=a+k \cdot \Delta x(\text { the partition points })
\end{gathered}
$$

and

$$
y_{k}=f\left(x_{k}\right)
$$

Example

Approximate

$$
\int_{1}^{2} \frac{1}{x} d x
$$

by using Simpson's Rule with $n=10$.

Example (continued)

Solution:

$$
\begin{gathered}
\int_{1}^{2} \frac{1}{x} d x \\
f(x)=\frac{1}{x} \\
{[a, b]=[1,2]} \\
n=10
\end{gathered}
$$

$$
\begin{aligned}
\Delta x & =\frac{b-a}{n}=\frac{2-1}{10}=\frac{1}{10} \\
x_{k} & =a+k \cdot \Delta x=1+\frac{k}{10} \\
y_{k}= & f\left(x_{k}\right)=\frac{1}{x_{k}} \\
& =\frac{1}{1+\frac{k}{10}}=\frac{10}{10+k}
\end{aligned}
$$

Example (continued)

$$
\begin{aligned}
\int_{1}^{2} \frac{1}{x} d x \approx & \frac{\Delta x}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+\cdots+2 y_{n-2}+4 y_{n-1}+y_{n}\right) \\
& =\frac{1 / 10}{3}\left(\frac{10}{10+0}+4 \cdot \frac{10}{10+1}+2 \cdot \frac{10}{10+2}+4 \cdot \frac{10}{10+3}+2 \cdot \frac{10}{10+4}+4\right. \\
& \left.\cdot \frac{10}{10+5}+2 \cdot \frac{10}{10+6}+4 \cdot \frac{10}{10+7}+2 \cdot \frac{10}{10+8}+4 \cdot \frac{10}{10+9}+\frac{10}{10+10}\right) \\
& =\frac{1}{30}\left(1+\frac{40}{11}+\frac{20}{12}+\frac{40}{13}+\frac{20}{14}+\frac{40}{15}+\frac{20}{16}+\frac{40}{17}+\frac{20}{18}+\frac{40}{19}+\frac{1}{2}\right) \\
& \approx 0.69315
\end{aligned}
$$

(Note: $\int_{1}^{2} \frac{1}{x} d x=\ln 2-\ln 1=\ln 2 \approx .69315$ and the Trapezoid Rule gave us $\int_{1}^{2} \frac{1}{x} d x$ $\approx 0.6937{ }^{\frac{x}{7}}$. So Simpson's Rule was more accurate than the Trapezoid Rule.)

Math Humor

