Infinite Series

Part 1

Infinite Series

An infinite series is an expression of the form

$$
u_{1}+u_{2}+u_{3}+\cdots+u_{k}+\cdots
$$

$$
=\sum_{k=1}^{\infty} u_{k}
$$

n-th Partial Sums

We will define the \boldsymbol{n}-th partial sum of the series to be

$$
s_{n}=\sum_{k=1}^{n} u_{k}
$$

The sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ is called the sequence of partial sums.

Sum of a Series

If $\left\{s_{n}\right\}_{n=1}^{\infty}$ converges to a limit S, then the series converges and S is the sum of the series.

$$
S=\lim _{n \rightarrow \infty} s_{n}=\sum_{k=1}^{\infty} u_{k}
$$

Otherwise, the series diverges and has no sum.

Example 1

The infinite series

$$
\begin{aligned}
\frac{3}{10}+\frac{3}{10^{2}} & +\frac{3}{10^{3}}+\cdots+\frac{3}{10^{k}}+\cdots \\
& =\sum_{k=1}^{\infty} \frac{3}{10^{k}}
\end{aligned}
$$

has the following partial sums:

Example 1 (continued)

$$
\begin{aligned}
& s_{1}=\frac{3}{10} \\
& s_{2}=\frac{3}{10}+\frac{3}{10^{2}}=\frac{33}{100} \\
& s_{3}=\frac{3}{10}+\frac{3}{10^{2}}+\frac{3}{10^{3}}=\frac{333}{1000} \\
& \vdots \\
& s_{n}=\frac{3}{10}+\frac{3}{10^{2}}+\frac{3}{10^{3}}+\cdots+\frac{3}{10^{n}}
\end{aligned}
$$

Example 1 (continued)

Here is a neat trick to remember to get a formula for s_{n} :

$$
\begin{aligned}
s_{n} & =\frac{3}{10}+\frac{3}{10^{2}}+\frac{3}{10^{3}}+\cdots+\frac{3}{10^{n}} \\
\frac{1}{10} s_{n} & =\frac{3}{10^{2}}+\frac{3}{10^{3}}+\frac{3}{10^{4}}+\cdots+\frac{3}{10^{n+1}}
\end{aligned}
$$

Subtracting we get:

$$
s_{n}-\frac{1}{10} s_{n}=\frac{3}{10}-\frac{3}{10^{n+1}}
$$

Example 1 (continued)

$$
\begin{gathered}
s_{n}-\frac{1}{10} s_{n}=\frac{3}{10}-\frac{3}{10^{n+1}} \\
\frac{9}{10} s_{n}=\frac{3}{10}\left(1-\frac{1}{10^{n}}\right) \\
s_{n}=\frac{1}{3}\left(1-\frac{1}{10^{n}}\right)
\end{gathered}
$$

Example 1 (continued)

Now we can see

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{1}{3}\left(1-\frac{1}{10^{n}}\right)=\frac{1}{3}
$$

That is:

$$
\frac{1}{3}=\frac{3}{10}+\frac{3}{10^{2}}+\frac{3}{10^{3}}+\cdots+\frac{3}{10^{k}}+\cdots
$$

Example 2

Does the series

$$
1-1+1-1+1-1+\cdots
$$

converge or diverge? What is its sum?

Example 2 (continued)

Solution:

$$
\begin{gathered}
s_{1}=1 \\
s_{2}=1-1=0 \\
s_{3}=1-1+1=1 \\
s_{4}=1-1+1-1=0
\end{gathered}
$$

etc.
So,

$$
s_{1}, s_{2}, s_{3}, s_{4}, \ldots=1,0,1,0, \ldots
$$

Since this sequence diverges, the series diverges and has no sum.

Example 3

Does the series

$$
\sum_{k=1}^{\infty} \frac{1}{k(k+1)}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots
$$

converge or diverge? If it converges, what is its sum?

Example 3 (continued)

Solution:

$$
\begin{aligned}
& \begin{aligned}
s_{n}=\sum_{k=1}^{n} & \frac{1}{k(k+1)} \\
& =\sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+1}\right) \\
& =\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =1-\frac{1}{n+1}
\end{aligned} \\
& \lim _{n \rightarrow \infty} s_{n}=
\end{aligned} \lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=1 .
$$

The series converges and $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}=1$.

http://math.sfsu.edu/beck/images/foxtrot.math.hw.how.to.get.answers.gif

