Infinite Series

Part 3

Harmonic Series

$$
\sum_{k=1}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\cdots
$$

The harmonic series diverges.

Proof:

We will show that the sequence of partial sums, $\left\{s_{n}\right\}$, is unbounded.

Harmonic Series (continued)

$$
\begin{gathered}
s_{1}=1 \\
s_{2}=1+\frac{1}{2} \\
s_{3}=1+\frac{1}{2}+\frac{1}{3} \\
s_{k}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{k}
\end{gathered}
$$

Clearly

$$
s_{1}<s_{2}<s_{3}<\cdots<s_{4}<\cdots
$$

Harmonic Series (continued)

$$
\begin{gathered}
s_{2}=1+\frac{1}{2}>\frac{1}{2}+\frac{1}{2}=\frac{2}{2} \\
s_{2^{2}}=s_{2}+\frac{1}{3}+\frac{1}{4}>s_{2}+\frac{1}{4}+\frac{1}{4}>\frac{3}{2} \\
s_{2^{3}}=s_{2^{2}}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>s_{2^{2}}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}>\frac{4}{2}
\end{gathered}
$$

If we continue on we see

$$
s_{2^{n}}>\frac{n+1}{2}
$$

Harmonic Series (continued)

Since for any M we can find an n such that

$$
\frac{n+1}{2}>M
$$

the sequence is unbounded.
Hence the harmonic series

$$
\sum_{k=1}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\cdots
$$

diverges.

Theorem 1

If $\sum u_{k}$ converges, then

$$
\lim _{k \rightarrow \infty} u_{k}=0 .
$$

IMPORTANT:

If $\lim _{k \rightarrow \infty} u_{k}=0$, then we do not know if the series converges or diverges!

The n-th Term Test for Divergence

If $\lim _{k \rightarrow \infty} u_{k} \neq 0$ then the series diverges.

Example 2

The series

$$
\sum_{k=1}^{\infty} \frac{k}{k+1}=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\cdots
$$

diverges since

$$
\lim _{k \rightarrow \infty} \frac{k}{k+1}=1 \neq 0
$$

Combining Series

If $\sum u_{k}$ and $\sum v_{k}$ are convergent series then $\sum\left(u_{k}+v_{k}\right)$ and $\sum\left(u_{k}-v_{k}\right)$ are convergent series and the sums of these series are related by

$$
\begin{aligned}
& \sum\left(u_{k}+v_{k}\right)=\sum u_{k}+\sum v_{k} \\
& \sum\left(u_{k}-v_{k}\right)=\sum u_{k}-\sum v_{k}
\end{aligned}
$$

Combining Series (continued)

If c is a nonzero constant, then the series $\sum u_{k}$ and $\sum c u_{k}$ both converge or both diverge.
In the case of convergence, the sums are related by

$$
\sum c u_{k}=c \sum u_{k}
$$

Combining Series (continued)

Convergence or divergence is unaffected by deleting a finite number of terms from the beginning of the series; that is, for any positive integer K, the series

$$
\sum_{k=1}^{\infty} u_{k}=u_{1}+u_{2}+u_{3}+\cdots
$$

and

$$
\sum_{k=K}^{\infty} u_{k}=u_{K}+u_{K+1}+u_{K+2}+\cdots
$$

both converge or both diverge.

Example 3

$$
\sum_{i=1}^{x}\left(\frac{2}{x}-\frac{2}{x=0}\right)
$$

$$
\begin{aligned}
& =\sum_{k=1}^{\infty} \frac{3}{4}\left(\frac{1}{4}\right)^{k-1}-\sum_{k=1}^{\infty} 2\left(\frac{1}{5}\right)^{k-1} \\
& =\frac{3 / 4}{1-1 / 4}-\frac{2}{1-1 / 5} \\
& =1-\frac{10}{4}=-\frac{3}{2}
\end{aligned}
$$

Example 4

$\sum_{k=1}^{\infty} \frac{5}{k}$

$$
\begin{aligned}
& =\sum_{k=1}^{\infty} 5\left(\frac{1}{k}\right) \\
& \quad=5 \sum_{k=1}^{\infty} \frac{1}{k}
\end{aligned}
$$

Therefore $\sum_{k=1}^{\infty} \frac{5}{k}$ diverges since $\sum_{k=1}^{\infty} \frac{1}{k}$ (the harmonic series) diverges.

Example 5

diverges since

diverges.

Theorem 2

If $\sum u_{k}$ is a series with positive terms and if $\left\{s_{n}\right\}$ is bounded then the series converges. Otherwise, the series diverges.

http://math.sfsu.edu/beck/images/dilbert.mobiusstrip.gif

