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Harmonic Series
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The harmonic series diverges.

Proof:

We will show that the sequence of partial sums,
{s,,}, is unbounded.



Harmonic Series (continued)
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S1 <8y < S3< e K5y < oo



Harmonic Series (continued)
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If we continue on we see
n+1
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Harmonic Series (continued)

Since for any M we can find an n such that

n+1>M
2 )

the sequence is unbounded.
Hence the harmonic series

z_1+++

diverges.



Theorem 1

If ), u;, converges, then

li = 0.
kon K
IMPORTANT:
If I}im u, = 0, then we do not know if the series

converges or diverges!



The n-th Term Test for Divergence

If lim u, # O then the series diverges.
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Example 2

The series

3
Zk+1__+3+4+'"

diverges since

k

i =1 # 0.
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Combining Series

If >, u;, and )] vy, are convergent series then

Y.(u; + vy) and ) (uy — vy) are convergent
series and the sums of these series are related

by
z(uk'l'vk) =Zuk+zvk
Z(uk—vk) =Zuk_2vk



Combining Series (continued)

If c is a nonzero constant, then the series ) uy
and ), cu; both converge or both diverge.

In the case of convergence, the sums are related

by
zcuk =CZuk



Combining Series (continued)

Convergence or divergence is unaffected by deleting a
finite number of terms from the beginning of the series;

that is, for any positive integer K, the series

Euk=u1+u2+u3+'“
k=1

and

0.0)

z U = Ug T Ugyr T Uk T 00
k=K
both converge or both diverge.



Example 3




Example 4
-54()
.

. 1 .
Therefore Zk=1 . diverges since ), -4 . (the harmonic
series) diverges.



Example 5

diverges since
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diverges.



Theorem 2

If ), u, is a series with positive terms
and if {s,,} is bounded
then the series converges.
Otherwise, the series diverges.



IT WAS THEORETICALLY
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EVERYTHING I NEEDED
TO DO REQUIRED ME TO
DO SOMETHING ELSE
FIRST, UNTIL IT ALL
LOOPED BACK ON ITSELF
LIKE A MOBIUS STRIP.
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