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Harmonic Series 
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The harmonic series diverges. 
 
Proof: 
We will show that the sequence of partial sums, 
𝑠𝑛 , is unbounded. 

J. Gonzalez-Zugasti, University of 
Massachusetts - Lowell 2 



Harmonic Series (continued) 
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Clearly 
𝑠1 < 𝑠2 < 𝑠3 < ⋯ < 𝑠4 < ⋯ 
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Harmonic Series (continued) 
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If we continue on we see 

𝑠2𝑛 >
𝑛 + 1
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Harmonic Series (continued) 

Since for any 𝑀 we can find an 𝑛 such that 
𝑛 + 1

2
> 𝑀, 

the sequence is unbounded.   
Hence the harmonic series  
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diverges. 
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Theorem 1 

If ∑𝑢𝑘 converges, then 
lim
𝑘→∞

𝑢𝑘 = 0. 

 
 
IMPORTANT: 
If lim
𝑘→∞

𝑢𝑘 = 0, then we do not know if the series 
converges or diverges! 
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The 𝑛-th Term Test for Divergence 

 
 

If lim
𝑘→∞

𝑢𝑘 ≠ 0 then the series diverges. 
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Example 2 

The series 
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diverges since 

lim
𝑘→∞

𝑘
𝑘 + 1

= 1 ≠ 0. 
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Combining Series 

If ∑𝑢𝑘 and ∑𝑣𝑘 are convergent series then 
∑ 𝑢𝑘 + 𝑣𝑘  and ∑ 𝑢𝑘 − 𝑣𝑘  are convergent 
series and the sums of these series are related 
by 

� 𝑢𝑘 + 𝑣𝑘 = �𝑢𝑘 + �𝑣𝑘 

� 𝑢𝑘 − 𝑣𝑘 = �𝑢𝑘 −�𝑣𝑘 
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Combining Series (continued) 

If 𝑐 is a nonzero constant, then the series ∑𝑢𝑘 
and ∑𝑐𝑢𝑘 both converge or both diverge.  
In the case of convergence, the sums are related 
by 

�𝑐𝑢𝑘 = 𝑐�𝑢𝑘 
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Combining Series (continued) 

Convergence or divergence is unaffected by deleting a 
finite number of terms from the beginning of the series; 
that is, for any positive integer 𝐾, the series 
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and 
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= 𝑢𝐾 + 𝑢𝐾+1 + 𝑢𝐾+2 + ⋯ 

both converge or both diverge. 
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Example 3 
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Example 4 
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Therefore ∑ 5
𝑘

∞
𝑘=1  diverges since ∑ 1

𝑘
∞
𝑘=1  (the harmonic 

series) diverges. 
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Example 5 
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diverges since  
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diverges. 
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Theorem 2 

If ∑𝑢𝑘 is a series with positive terms  
and if 𝑠𝑛  is bounded 

then the series converges. 
Otherwise, the series diverges.  
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