Section 9.2

After viewing the lecture videos and reading the textbook, you should be able to answer the following questions:

The \boldsymbol{n}-th partial sum of the series $u_{1}+u_{2}+u_{3}+\cdots+u_{k}+\cdots=\sum_{k=1}^{\infty} u_{k}$ is $s_{n}=\sum_{k=1}^{n} u_{k}$.
A geometric series is a series which can be written in the form $\sum_{k=1}^{\infty} a r^{k-1}=a+a r+a r^{2}+$ $\cdots+a r^{k-1}+\cdots$. It converges if $|r|<1$ and it diverges if $|r| \geq 1$. If the geometric series converges, then its sum is $\sum_{k=1}^{\infty} a r^{k-1}=\frac{a}{1-r}$.

The series $\sum_{k=1}^{\infty}\left(\frac{1}{k}\right)=1+\frac{1}{2}+\frac{1}{3}+\cdots$ is the harmonic series and it diverges.
The \boldsymbol{n}-th Term Test for Divergence
"If $\lim _{k \rightarrow \infty} u_{k} \neq 0$ then $\sum_{k=1}^{\infty} u_{k}$ diverges".

1. Find s_{1}, s_{2}, s_{3}, and s_{4} for the series $1+1+1+\cdots+1+\cdots=\sum_{k=1}^{\infty} 1$.
2. Which of the following are geometric series? If they are geometric series, what are a and r ?
a. $\quad \sum_{k=3}^{\infty}\left(5 \cdot 2^{2 k}\right)=320+1280+5120+20480+\cdots$
b. $\sum_{k=1}^{\infty}\left(\frac{1}{3 k^{5}}\right)=\frac{1}{3}+\frac{1}{96}+\frac{1}{729}+\cdots+\frac{1}{3 k^{5}}+\cdots$
3. Do the following series converge or diverge?
a. $\quad \sum_{k=1}^{\infty}\left(\frac{1}{5 k}\right)=\frac{1}{5}+\frac{1}{10}+\frac{1}{15}+\cdots$
b. $\sum_{k=15}^{\infty}\left(\frac{1}{k}\right)=\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\cdots$
4. If $\lim _{k \rightarrow \infty} u_{k}=0$, then does $\sum_{k=1}^{\infty} u_{k}$ converge?
