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The Comparison Test 

Let ∑𝑎𝑘 and ∑𝑏𝑘 be series with positive terms 
and suppose 

𝑎𝑁 ≤ 𝑏𝑁,𝑎𝑁+1 ≤ 𝑏𝑁+1,𝑎𝑁+2 ≤ 𝑏𝑁+2,⋯ , 
a) If the “bigger series” ∑𝑏𝑘 converges, then 

the “smaller series” ∑𝑎𝑘 also converges. 
b) On the other hand, if the “smaller series” 

∑𝑎𝑘 diverges, then the “bigger series” ∑𝑏𝑘 
also diverges. 
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Informal Principle #1 

Suppose ∑𝑢𝑘 is series with positive terms. 
 
Constant terms in the denominator of 𝑢𝑘 can 
usually be deleted without affecting the 
convergence of divergence of the series. 
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Example 1 

Guess if the series converge or diverge. 

a) ∑ 1
2𝑘+1

∞
𝑘=1  

b) ∑ 1
𝑘−2

∞
𝑘=1  

c) ∑ 1

𝑘+12
3

∞
𝑘=1  
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Example 1 (continued) 

Solution: 

(a) ∑ 1
2𝑘+1

∞
𝑘=1  we expect to behave like 

∑ 1
2𝑘

∞
𝑘=1 , which is a convergent geometric 

series (𝑎 = 1
2

, 𝑟 = 1
2
) 
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Example 1 (continued) 

(b) ∑ 1
𝑘−2

∞
𝑘=1  we expect to behave like 

∑ 1
𝑘

∞
𝑘=1 , which is a divergent 𝑝-series (𝑝 = 1

2
) 

 

(c) ∑ 1

𝑘+12
3

∞
𝑘=1  we expect to behave like 

∑ 1
𝑘3

∞
𝑘=1 , which is a convergent 𝑝-series 

(𝑝 = 3) 
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Informal Principle #2 

If a polynomial in 𝑘 appears as a factor in the 
numerator or denominator of 𝑢𝑘,  
all but the highest power of 𝑘 in the polynomial 
may usually be deleted without affecting the 
convergence of divergence behavior of the 
series. 
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Example 2 

Guess if the series converge or diverge. 

a) ∑ 1
𝑘3+2𝑘

∞
𝑘=1  

b) ∑ 6𝑘4−2𝑘3+1
𝑘5+𝑘2−2𝑘

∞
𝑘=1  
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Example 2 (continued) 

Solution: 

(a) ∑ 1
𝑘3+2𝑘

∞
𝑘=1  we expect to behave like 

∑ 1
𝑘3

∞
𝑘=1 , which is a convergent 𝑝-series (𝑝 = 3

2
). 

(b) ∑ 6𝑘4−2𝑘3+1
𝑘5+𝑘2−2𝑘

∞
𝑘=1  we expect to behave like 

∑ 6𝑘4

𝑘5
∞
𝑘=1 = 6∑ 1

𝑘
∞
𝑘=1 , which is a constant times 

the divergent harmonic series. 
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Example 3 

Use the Comparison Test to determine whether 

�
1

2𝑘2 + 𝑘

∞

𝑘=1

 

converges or diverges. 
 
Solution: 

We expect this series to behave like ∑ 1
2𝑘2

∞
𝑘=1 =

1
2
∑ 1

𝑘2
∞
𝑘=1 , which is a constant times a convergent 𝑝-series 

(𝑝 = 2). 
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Example 3 (continued) 

Since we expect the series to converge, we want to 
find ∑𝑏𝑘 such that ∑𝑏𝑘 converges and  

1
2𝑘2 + 𝑘

≤ 𝑏𝑘. 

Notice 
1

2𝑘2 + 𝑘
≤

1
2𝑘2

 for 𝑘 ≥ 1. 

Since ∑ 1
2𝑘2

∞
𝑘=1  converges, so does ∑ 1

2𝑘2+𝑘
∞
𝑘=1  by 

the Comparison Test. 
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Example 4 

Use the Comparison Test to determine whether 

�
1

2𝑘2 − 𝑘

∞

𝑘=1

 

converges or diverges. 
 
Solution: 

We expect this series to behave like ∑ 1
2𝑘2

∞
𝑘=1 =

1
2
∑ 1

𝑘2
∞
𝑘=1 , which is a constant times a convergent 𝑝-series 

(𝑝 = 2). 
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Example 4 (continued) 

Since we expect the series to converge, we want 
to find ∑𝑏𝑘 such that ∑𝑏𝑘 converges and  

1
2𝑘2 − 𝑘

≤ 𝑏𝑘 . 

Unfortunately 
1

2𝑘2 − 𝑘
>

1
2𝑘2

 for 𝑘 ≥ 1. 

So ∑ 1
2𝑘2

∞
𝑘=1  cannot be our choice for ∑𝑏𝑘. 
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Example 4 (continued) 

We want to decrease the denominator of 1
2𝑘2−𝑘

. 

If we try 𝑏𝑘 = 1
2𝑘2−𝑘2

= 1
𝑘2

 we get 
1

2𝑘2 − 𝑘
≤

1
2𝑘2 − 𝑘2

=
1
𝑘2

 for 𝑘 ≥ 1. 

Since ∑ 1
𝑘2

∞
𝑘=1  is a convergent 𝑝-series (𝑝 = 2),  

our series ∑ 1
2𝑘2−𝑘

∞
𝑘=1  converges by the 

Comparison Test. 
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Example 5 

Use the Comparison Test to determine whether 

�
1

𝑘 − 1
4

∞

𝑘=1

 

converges or diverges. 
 
Solution: 

We expect this series to behave like ∑ 1
𝑘

∞
𝑘=1 , which is 

the divergent harmonic series. 
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Example 5 (continued) 
Since we expect the series to diverge, we want to find 
∑𝑎𝑘 such that ∑𝑎𝑘 diverges and  

𝑎𝑘 ≤
1

𝑘 − 1
4

. 

Notice  
1
𝑘
≤

1

𝑘 − 1
4

 for 𝑘 ≥ 1. 

Since ∑ 1
𝑘

∞
𝑘=1  diverges, our series ∑ 1

𝑘−14

∞
𝑘=1  diverges by the 

Comparison Test. 

J. Gonzalez-Zugasti, University of 
Massachusetts - Lowell 16 



Example 6 
 
Use the Comparison Test to determine whether 

�
1
𝑘 + 5

∞

𝑘=1

 

converges or diverges. 
 
Solution: 
We expect this series to behave like ∑ 1

𝑘
∞
𝑘=1 , which is a 

divergent 𝑝-series (𝑝 = 1
2
). 
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Example 6 (continued) 

Since we expect the series to diverge, we want 
to find ∑𝑎𝑘 such that ∑𝑎𝑘 diverges and  

𝑎𝑘 ≤
1
𝑘 + 5

. 

Unfortunately, 
1
𝑘
≥

1
𝑘 + 5

for 𝑘 ≥ 1. 

So ∑ 1
𝑘

∞
𝑘=1  cannot be our choice for ∑𝑎𝑘. 
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Example 6 (continued) 

We want to increase the denominator of 1
𝑘+5

. 

If we try 𝑎𝑘 = 1
𝑘+ 𝑘

= 1
2 𝑘

 we get 
1

𝑘 + 𝑘
=

1
2 𝑘

≤
1
𝑘 + 5

for 𝑘 ≥ 25. 

Since ∑ 1
2 𝑘

∞
𝑘=1 = 1

2
∑ 1

𝑘
∞
𝑘=1 is a constant times a 

divergent 𝑝-series (𝑝 = 1
2
),  

our series ∑ 1
𝑘+5

∞
𝑘=1  diverges by the Comparison 

Test. 
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The Limit Comparison Test 

Let ∑𝑎𝑘 and ∑𝑏𝑘 be series with positive terms and 
suppose 

𝜌 = lim
𝑘→∞

𝑎𝑘
𝑏𝑘

 

a) If 𝜌 is finite and 𝜌 > 0, then the series both 
converge or both diverge. 

b) If 𝜌 = 0 and ∑𝑏𝑘 converges, then ∑𝑎𝑘 
converges. 

c) If 𝜌 = ∞ and ∑𝑏𝑘 diverges, then ∑𝑎𝑘 diverges. 
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Example 7 
Use the Limit Comparison Test to determine whether 

�
3𝑘3 − 2𝑘2 + 4
𝑘5 − 𝑘3 + 2

∞

𝑘=1

 

converges or diverges. 
 
Solution: 

We expect this series to behave like∑ 3𝑘3

𝑘5
∞
𝑘=1 = ∑ 3

𝑘2
∞
𝑘=1 =

3∑ 1
𝑘2

∞
𝑘=1 , which is a constant times a convergent 𝑝-series 

(𝑝 = 2). 
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Example 7 (continued) 

𝜌 = lim
𝑘→∞

3𝑘3 − 2𝑘2 + 4
𝑘5 − 𝑘3 + 2

3
𝑘2

 

= lim
𝑘→∞

3𝑘3 − 2𝑘2 + 4
𝑘5 − 𝑘3 + 2

∙
𝑘2

3
 

Since this is a rational function with the degree of 
the numerator equal to the degree of the 
denominator (=5), this limit is equal to the ratio of 
the leading coefficients. 
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Example 7 (continued) 

𝜌 = lim
𝑘→∞

3𝑘3 − 2𝑘2 + 4
𝑘5 − 𝑘3 + 2

∙
𝑘2

3
=

3
3

= 1 > 0 

 
So, by the Limit Comparison Test,  

∑ 3𝑘3−2𝑘2+4
𝑘5−𝑘3+2

∞
𝑘=1  converges. 
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Thomas Simpson (1720 - 1761) 
Simpson was a successful text writer and did most 
of his work in probability. He taught at the Royal 
Military Academy in Woolwich. His first articles 
were published in the Ladies' Diary. Later he 
became editor of this popular journal.  
 
Simpson's rule to approximate definite integrals 
was developed and used before he was born. It is 
another of history's beautiful quirks that one of 
the ablest mathematicians of the 18th century is 
remembered not for his own work or his 
textbooks but for a rule that was never his, that he 
never claimed, and that bears his name only 
because he happened to mention it in one of his 
books. 
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