# Alternating Series, Absolute and Conditional Convergence 

Part 1

## Alternating Series

Series whose terms are alternating positive and negative are called alternating.

$$
\sum_{k=1}^{\infty}(-1)^{k} a_{k} \text { or } \sum_{k=1}^{\infty}(-1)^{k+1} a_{k} \quad a_{k}>0
$$

## Alternating Series Test

An alternating series

$$
\sum_{k=1}^{\infty}(-1)^{k} a_{k} \text { or } \sum_{k=1}^{\infty}(-1)^{k+1} a_{k} \quad a_{k}>0
$$

converges if the following two conditions are satisfied:
a) $a_{1} \geq a_{2} \geq a_{3} \geq \cdots \geq a_{k} \geq \cdots$
b) $\lim _{k \rightarrow \infty} a_{k}=0$

## Alternating Harmonic Series

$$
\begin{aligned}
& \sum_{k=1}^{\infty}(-1)^{k+1} \frac{1}{k} \\
&=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+(-1)^{k+1} \frac{1}{k}+\cdots
\end{aligned}
$$

Since $a_{k}=\frac{1}{k}>\frac{1}{k+1}=a_{k+1}>0$
and $\lim _{k \rightarrow \infty} a_{k}=\lim _{k \rightarrow \infty} \frac{1}{k}=0$
the Alternating Harmonic Series converges.

## Example 1

Does the alternating series

$$
\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k+3}{k(k+1)}
$$

converge or diverge?

## Solution:

$$
a_{k}=\frac{k+3}{k(k+1)}
$$

## Example 1 (continued)

$$
\begin{aligned}
a_{k}= & \frac{k+3}{k(k+1)} \\
a_{k+1} & =\frac{(k+1)+3}{(k+1)((k+1)+1)} \\
& =\frac{k+4}{(k+1)(k+2)}
\end{aligned}
$$

We want to show that $a_{k} \geq a_{k+1}$.
If $a_{k} \geq a_{k+1}$ then $1 \geq \frac{a_{k+1}}{a_{k}}$.

## Example 1 (continued)

$$
\begin{aligned}
\frac{a_{k+1}}{a_{k}} & =\frac{\left(\frac{k+4}{(k+1)(k+2)}\right)}{\left(\frac{k+3}{k(k+1)}\right)} \\
& =\frac{(k+4) k(k+1)}{(k+1)(k+2)(k+3)} \\
& =\frac{k(k+4)}{(k+2)(k+3)}
\end{aligned}
$$

## Example 1 (continued)

Therefore $1 \geq \frac{a_{k+1}}{a_{k}}$ and $a_{k} \geq a_{k+1}$.
Also, $\lim _{k \rightarrow \infty} a_{k}=\lim _{k \rightarrow \infty} \frac{k+3}{k(k+1)}=0$.
So by the Alternating Series Test, the series converges.

## The Alternating Series Estimation Theorem

If an alternating series satisfies the hypotheses of the alternating series test, and
if the sum $S$ of the series is approximated by the $n$th partial sum $s_{n}$,
then the absolute value of the error is less than $a_{n+1}$ (the first unused term).

Furthermore, the sum $S$ lies between any two successive partial sums $s_{n}$ and $s_{n+1}$, and the remainder, $S-s_{n}$, has the same sign as the first unused term.

## The Alternating Series Estimation Theorem (Summary)

$$
\begin{gathered}
S=\sum_{k=1}^{\infty}(-1)^{k} a_{k} \approx s_{n}=\sum_{k=1}^{n}(-1)^{k} a_{k} \\
\mid \underbrace{S-s_{n} \mid}_{\text {the e error }}<\substack{\text { the first unused term }} \\
s_{n+1}^{a_{n}} \leq S \leq s_{n+1}
\end{gathered}
$$

- $S-s_{n}$ is positive if $a_{n+1}$ is positive
- $S-s_{n}$ is negative if $a_{n+1}$ is negative


## Example 2

How many terms should be used to estimate

$$
\sum_{k=1}^{\infty}(-1)^{k} \frac{1}{k^{2}+3}
$$

with an error of less than 0.001 ?

## Solution:

Find the $n$ such that $a_{n+1}<0.001$.

## Example 2 (continued)

$$
\begin{aligned}
a_{n+1}= & \frac{1}{(n+1)^{2}+3}<0.001=\frac{1}{1000} \\
& (n+1)^{2}+3>1000 \\
& (n+1)^{2}>997 \\
& n+1>\sqrt{997} \\
& n>\sqrt{997}-1 \approx 30.575
\end{aligned}
$$

So 31 or more terms should be used.

http://math-fail.com/images-old/car.jpg

