Alternating Series, Absolute and Conditional Convergence

Part 1

J. Gonzalez-Zugasti, University of Massachusetts - Lowell

Alternating Series

Series whose terms are alternating positive and negative are called **alternating**.

$$\sum_{k=1}^{\infty} (-1)^k a_k \text{ or } \sum_{k=1}^{\infty} (-1)^{k+1} a_k \quad a_k > 0$$

Alternating Series Test

An alternating series

$$\sum_{k=1}^{\infty} (-1)^k a_k \text{ or } \sum_{k=1}^{\infty} (-1)^{k+1} a_k \quad a_k > 0$$

converges if the following two conditions are satisfied:

a)
$$a_1 \ge a_2 \ge a_3 \ge \dots \ge a_k \ge \dots$$

b) $\lim_{k \to \infty} a_k = 0$

Alternating Harmonic Series

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$$
$$= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^{k+1} \frac{1}{k} + \dots$$

Since
$$a_k = \frac{1}{k} > \frac{1}{k+1} = a_{k+1} > 0$$

and $\lim_{k \to \infty} a_k = \lim_{k \to \infty} \frac{1}{k} = 0$
the Alternating Harmonic Series converges.

Example 1

Does the alternating series

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k+3}{k(k+1)}$$

converge or diverge?

Solution:

$$a_k = \frac{k+3}{k(k+1)}$$

J. Gonzalez-Zugasti, University of Massachusetts - Lowell

Example 1 (continued)

$$\begin{aligned} a_k &= \frac{k+3}{k(k+1)} \\ a_{k+1} &= \frac{(k+1)+3}{(k+1)((k+1)+1)} \\ &= \frac{k+4}{(k+1)(k+2)} \end{aligned}$$

We want to show that $a_k \ge a_{k+1}$.
If $a_k \ge a_{k+1}$ then $1 \ge \frac{a_{k+1}}{a_k}$.

Example 1 (continued)

Example 1 (continued)

Therefore
$$1 \ge \frac{a_{k+1}}{a_k}$$
 and $a_k \ge a_{k+1}$.

Also, $\lim_{k \to \infty} a_k = \lim_{k \to \infty} \frac{k+3}{k(k+1)} = 0.$

So by the Alternating Series Test, the series converges.

The Alternating Series Estimation Theorem

If an alternating series satisfies the hypotheses of the alternating series test, and

if the sum S of the series is approximated by the nth partial sum s_n ,

then the absolute value of the error is less than a_{n+1} (the first unused term).

Furthermore, the sum S lies between any two successive partial sums s_n and s_{n+1} , and the remainder, $S - s_n$, has the same sign as the first unused term.

The Alternating Series Estimation Theorem (Summary)

$$s_n \le S \le s_{n+1}$$

- $S s_n$ is positive if a_{n+1} is positive
- $S s_n$ is negative if a_{n+1} is negative

Example 2

How many terms should be used to estimate

$$\sum_{k=1}^{\infty} (-1)^k \frac{1}{k^2 + 3}$$

with an error of less than 0.001?

Solution:

Find the *n* such that $a_{n+1} < 0.001$.

Example 2 (continued)

$$a_{n+1} = \frac{1}{(n+1)^2 + 3} < 0.001 = \frac{1}{1000}$$
$$(n+1)^2 + 3 > 1000$$
$$(n+1)^2 > 997$$
$$n+1 > \sqrt{997}$$
$$n > \sqrt{997} - 1 \approx 30.575$$

So 31 or more terms should be used.

http://math-fail.com/images-old/car.jpg