Power Series

Part 1

Power Series

Suppose x is a variable and $c_{k} \& a$ are constants.
A power series about $\boldsymbol{x}=\mathbf{0}$ is

A power series about $\boldsymbol{x}=\boldsymbol{a}$ is

$$
\sum_{k=0}^{\infty} c_{k}(x-a)^{k}
$$

$a=$ center of the power series
$c_{k}=$ coefficients of the power series

Examples of Power Series

- $\sum_{k=0}^{\infty} x^{k}$

$$
a=0, c_{k}=1
$$

- $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$

$$
a=0, c_{k}=\frac{1}{k!}
$$

- $\sum_{k=0}^{\infty} k!x^{k}$
$a=0, c_{k}=k!$
- $\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{k}}{3^{k}(k+1)}$
$a=0, c_{k}=\frac{(-1)^{k}}{3^{k}(k+1)}$
- $\sum_{k=1}^{\infty} \frac{(x-5)^{k}}{k^{2}}$
$a=5, c_{k}=\frac{1}{k^{2}}$

Series That Are Not Power Series

- $\sum_{k=0}^{\infty} \frac{1}{x^{k}}$
- $\sum_{k=0}^{\infty} \sin x$
- $\sum_{k=0}^{\infty} e^{-x}$
- $\sum_{k=0}^{\infty} \ln x$

Question

For what values of x does a given power series converge?

Power Series Convergence Theorem

For a power series $\sum c_{k}(x-a)^{k}$, exactly one of the following is true:
(a) The series converges only for $x=a$.
(b) The series converges absolutely for all x.
(c) The series converges absolutely for all x in some finite open interval ($a-R, a+R$) and diverges if $x<a-R$ or $x>a+R$.
At the points $x=a-R$ and $x=a+R$, the series may converge (absolutely or conditionally) or diverge.
$R=$ radius of convergence
($a-R, a+R$) = interval of convergence

Example 1

Find the interval of convergence and radius of convergence for

$$
\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+\cdots+x^{k}+\cdots
$$

Example 1 (continued)

Solution: $\sum_{k=0}^{\infty} x^{k}$
$\sum_{k=0}^{\infty} x^{k}$ is a geometric series with $a=1$ and $r=x$.
Therefore, the series

- converges absolutely for $|x|<1$
- diverges for $|x| \geq 1$.

So the

- interval of convergence is $(-1,1)$
- radius of convergence is $R=1$ (half the width of the interval of convergence).

Example 1 (continued)

Also, note that since $\sum_{k=0}^{\infty} x^{k}$ is a geometric series with $a=1$ and $r=x$,

$$
\sum_{k=0}^{\infty} x^{k}=\frac{a}{1-r}=\frac{1}{1-x}, \quad \text { for }|x|<1
$$

Example 2

Find the interval of convergence and radius of convergence for

$$
\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{k}}{k!}+\cdots
$$

Note: 0! = 1

Example 2 (continued)

Solution: $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$
Using the Ratio Test for Absolute Convergence:

$$
\begin{gathered}
\rho=\lim _{k \rightarrow \infty} \frac{\left|u_{k+1}\right|}{\left|u_{k}\right|}=\lim _{k \rightarrow \infty} \frac{\left|\frac{x^{k+1}}{(k+1)!}\right|}{\left|\frac{x^{k}}{k!}\right|} \\
=\lim _{k \rightarrow \infty}\left|\frac{x^{k+1}}{(k+1)!}\right| \cdot\left|\frac{k!}{x^{k}}\right|=\lim _{k \rightarrow \infty} \frac{|x|}{(k+1)}=0<1
\end{gathered}
$$

Example 2 (continued)

Therefore the series converges absolutely for any x.

So the

- interval of convergence is $(-\infty, \infty)$
- radius of convergence is $R=\infty$.

Important Limit

Example 2 tells us that $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ converges for all x, therefore:

$$
\lim _{k \rightarrow \infty} \frac{x^{k}}{k!}=0
$$

Example 3

Find the interval of convergence and radius of convergence for

$$
\sum_{k=0}^{\infty} k!x^{k}
$$

Example 3 (continued)

Solution: $\sum_{k=0}^{\infty} k!x^{k}$
If $x=0$, then $\sum_{k=0}^{\infty} k!x^{k}=\sum_{k=0}^{\infty} k!\cdot 0^{k}=0$.
If $x \neq 0$, then the Ratio Test for Absolute Convergence gives:

$$
\begin{gathered}
\rho=\lim _{k \rightarrow \infty} \frac{\left|u_{k+1}\right|}{\left|u_{k}\right|}=\lim _{k \rightarrow \infty} \frac{\left|(k+1)!x^{k+1}\right|}{\left|k!x^{k}\right|} \\
=\lim _{k \rightarrow \infty}(k+1)|x|=\infty
\end{gathered}
$$

Example 3 (continued)

Therefore the series diverges for $x \neq 0$.

So the

- interval of convergence is $\{0\}$
- radius of convergence is $R=0$.

Example 4

Find the interval of convergence and radius of convergence for

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{k}}{3^{k}(k+1)} \\
& \quad=1-\frac{x}{3(2)}+\frac{x^{2}}{3^{2}(3)}-\frac{x^{3}}{3^{3}(4)}+\cdots
\end{aligned}
$$

Example 4 (continued)

Solution: $\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{k}}{3^{k}(k+1)} ;$ Using the Ratio Test for Absolute Convergence:

$$
\begin{aligned}
\rho & =\lim _{k \rightarrow \infty} \frac{\left|u_{k+1}\right|}{\left|u_{k}\right|}=\lim _{k \rightarrow \infty} \frac{\left|\frac{x^{k+1}}{3^{k+1}((k+1)+1)}\right|}{\left|\frac{x^{k}}{3^{k}(k+1)}\right|} \\
& =\lim _{k \rightarrow \infty}\left|\frac{x^{k+1}}{3^{k+1}((k+1)+1)}\right| \cdot\left|\frac{3^{k}(k+1)}{x^{k}}\right| \\
& =\lim _{k \rightarrow \infty}\left|\frac{x(k+1)}{3(k+2)}\right|=\frac{|x|}{3} \lim _{k \rightarrow \infty} \frac{k+1}{k+2}=\frac{|x|}{3}
\end{aligned}
$$

Example 4 (continued)

There are three cases we need to consider:
Case 1: $\rho<1$, in which case the series converges absolutely.
Case 2: $\rho>1$, in which case the series diverges.
Case 3: $\rho=1$, in which case we need to look at each case individually in order to determine if it converges (absolutely or conditionally) or if it diverges.

Example 4 (continued)

Case 1: $\rho=\frac{|x|}{3}<1 \Rightarrow|x|<3$, so the series converges absolutely for $|x|<3$

Case 2: $\rho=\frac{|x|}{3}>1 \Rightarrow|x|>3$, so the series diverges for $|x|>3$

Case 3: $\rho=\frac{|x|}{3}=1 \Rightarrow|x|=3 \Rightarrow x= \pm 3$

Example 4 (continued)

When $x=3$, the series becomes

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k} 3^{k}}{3^{k}(k+1)}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k+1)}
$$

which is the conditionally convergent alternating harmonic series.
$\frac{\text { When } x=-3}{\infty}$, the series becomes

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}(-3)^{k}}{3^{k}(k+1)}=\sum_{k=0}^{\infty} \frac{3^{k}}{3^{k}(k+1)}=\sum_{k=0}^{\infty} \frac{1}{(k+1)}
$$

which is the divergent harmonic series.

Example 4 (continued)

Therefore the series

- converges absolutely for $|x|<3$
- converges conditionally for $x=3$
- diverges for $x \leq-3$ or $3<x$

So the

- interval of convergence is $(-3,3$]
- radius of convergence is $R=3$ (half the width of the interval of convergence).

Example 5

Find the interval of convergence and radius of convergence for

$$
\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots
$$

This is a power series of the form $\sum_{k=0}^{\infty} c_{k} x^{k}$ with $c_{k}=\frac{(-1)^{k / 2}}{k!}$ for k even and $c_{k}=0$ for k odd.

Example 5 (continued)

Solution: $\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}$; Using the Ratio Test for Absolute Convergence:

$$
\begin{aligned}
\rho= & \lim _{k \rightarrow \infty} \frac{\left|u_{k+1}\right|}{\left|u_{k}\right|}=\lim _{k \rightarrow \infty} \frac{\left|\frac{x^{2(k+1)}}{(2(k+1))!}\right|}{\left|\frac{x^{2 k}}{(2 k)!}\right|} \\
& =\lim _{k \rightarrow \infty}\left|\frac{x^{2(k+1)}}{(2(k+1))!}\right| \cdot\left|\frac{(2 k)!}{x^{2 k}}\right| \\
& =\lim _{k \rightarrow \infty}\left|\frac{x^{2 k+2}}{(2 k+2)!}\right| \cdot\left|\frac{(2 k)!}{x^{2 k}}\right|
\end{aligned}
$$

Example 5 (continued)

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \mid & \left.\frac{x^{2 k+2}}{(2 k+2)!}|\cdot| \frac{(2 k)!}{x^{2 k}} \right\rvert\, \\
& =\lim _{k \rightarrow \infty}\left|\frac{x^{2 k+2}}{(2 k+2) \cdot(2 k+1) \cdot(2 k)!} \cdot \frac{(2 k)!}{x^{2 k}}\right| \\
& =\lim _{k \rightarrow \infty}\left|\frac{x^{2}}{(2 k+2)(2 k+1)}\right| \\
& =\left|x^{2}\right| \lim _{k \rightarrow \infty} \frac{1}{(2 k+2)(2 k+1)} \\
& =\left|x^{2}\right| \cdot 0=0<1
\end{aligned}
$$

Example 5 (continued)

Therefore the series converges absolutely for any x.

So the

- interval of convergence is $(-\infty, \infty)$
- radius of convergence is $R=\infty$.

Example 6

Find the interval of convergence and radius of convergence for

Example 6 (continued)

Solution: $\sum_{k=1}^{\infty} \frac{(x-5)^{k}}{k^{2}}$; Using the Ratio Test for Absolute Convergence:

$$
\begin{aligned}
\rho=\lim _{k \rightarrow \infty} & \frac{\left|u_{k+1}\right|}{\left|u_{k}\right|}=\lim _{k \rightarrow \infty} \frac{\left|\frac{(x-5)^{k+1}}{(k+1)^{2}}\right|}{\left|\frac{(x-5)^{k}}{k^{2}}\right|} \\
& =\lim _{k \rightarrow \infty}\left|\frac{(x-5)^{k+1}}{(k+1)^{2}}\right| \cdot\left|\frac{k^{2}}{(x-5)^{k}}\right| \\
& =\lim _{k \rightarrow \infty}\left|\frac{(x-5) k^{2}}{(k+1)^{2}}\right|=|x-5| \lim _{k \rightarrow \infty} \frac{k^{2}}{(k+1)^{2}} \\
& =|x-5| \cdot 1=|x-5|
\end{aligned}
$$

Example 6 (continued)

Case 1:

$$
\begin{gathered}
\rho=|x-5|<1 \\
-1<x-5<1 \\
4<x<6
\end{gathered}
$$

so the series converges absolutely for $4<x<6$.
Case 2:

$$
\begin{gathered}
\rho=|x-5|>1 \\
x-5<-1 \text { or } 1<x-5 \\
x<4 \text { or } 6<x,
\end{gathered}
$$

so the series diverges for $x<4$ or $6<x$.
Case 3:

$$
\begin{gathered}
\rho=|x-5|=1 \\
x-5= \pm 1 \\
x=6 \text { or } x=4 .
\end{gathered}
$$

Example 6 (continued)

When $x=6$, the series becomes

$$
\sum_{k=1}^{\infty} \frac{(6-5)^{k}}{k^{2}}=\sum_{k=1}^{\infty} \frac{(1)^{k}}{k^{2}}=\sum_{k=1}^{\infty} \frac{1}{k^{2}}
$$

which is a convergent p-series $(p=2)$.
When $x=4$, the series becomes

$$
\sum_{k=1}^{\infty} \frac{(4-5)^{k}}{k^{2}}=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}}
$$

Since

$$
\sum_{k=1}^{\infty}\left|\frac{(-1)^{k}}{k^{2}}\right|=\sum_{k=1}^{\infty} \frac{1}{k^{2}}
$$

is a convergent p-series ($p=2$), the series converges absolutely at $x=4$.

Example 6 (continued)

Therefore the series

- converges absolutely for $[4,6]$
- diverges for $x<4$ or $6<x$

So the

- interval of convergence is $[4,6]$
- radius of convergence is $R=1$ (half the width of the interval of convergence).

http://math.sfsu.edu/beck/images/calvin.hobbes.bushel.gif

