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Theorem 1 

 
If ∑𝑎𝑛𝑥𝑛 converges absolutely for 𝑥 < 𝑅, 
 

then ∑𝑎𝑛 𝑓 𝑥 𝑛
 converges absolutely for any 

continuous function 𝑓 on 𝑓 𝑥 < 𝑅. 
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Example 1 

Since 
1

1 − 𝑥
= �𝑥𝑘

∞

𝑘=0

, for 𝑥 < 1 

 
Theorem 1 tells us that 

1
1 − 4𝑥2

= � 4𝑥2 𝑘
∞

𝑘=0

, for 4𝑥2 < 1 
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Example 2 

Find the interval of convergence of 

� 𝑒𝑥 − 4 𝑘
∞

𝑘=0

 

and, within this interval, the sum of the series as 
a function of 𝑥. 
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Example 2 (continued) 

Solution: ∑ 𝑒𝑥 − 4 𝑘∞
𝑘=0 ; Using the Ratio Test for 

Absolute Convergence: 

𝜌 = lim
𝑘→∞

𝑢𝑘+1
𝑢𝑘

= lim
𝑘→∞

𝑒𝑥 − 4 𝑘+1

𝑒𝑥 − 4 𝑘  

= lim
𝑘→∞

𝑒𝑥 − 4  
= 𝑒𝑥 − 4 lim

𝑘→∞
1 

= 𝑒𝑥 − 4  
Therefore the series converges absolutely when 
𝜌 = 𝑒𝑥 − 4 < 1. 
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Example 2 (continued) 

𝜌 = 𝑒𝑥 − 4 < 1 
−1 < 𝑒𝑥 − 4 < 1 

3 < 𝑒𝑥 < 5 
ln 3 < 𝑥 < ln 5 

 
 
Let’s check what happens to the series at the 
endpoint of this interval. 
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Example 2 (continued) 

At 𝑥 = ln 3, the series becomes 

� 𝑒ln 3 − 4 𝑘
∞

𝑘=0

= � 3 − 4 𝑘
∞

𝑘=0

= � −1 𝑘
∞

𝑘=0

 

which diverges. 
At 𝑥 = ln 5, the series becomes 

� 𝑒ln 5 − 4 𝑘
∞

𝑘=0

= � 5 − 4 𝑘
∞

𝑘=0

= � 1
∞

𝑘=0

 

which diverges. 
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Example 2 (continued) 

The series ∑ 𝑒𝑥 − 4 𝑘∞
𝑘=0  is a convergent 

geometric series (𝑎 = 1, 𝑟 = 𝑒𝑥 − 4) when 
ln 3 < 𝑥 < ln 5 
and the sum is 

𝑎
1 − 𝑟

=
1

1 − 𝑒𝑥 − 4
=

1
5 − 𝑒𝑥

. 
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Power Series as Functions 

If ∑ 𝑐𝑘 𝑥 − 𝑎 𝑘∞
𝑘=0  converges for 𝑥 − 𝑎 < 𝑅 

(that is, 𝑎 − 𝑅 < 𝑥 < 𝑎 + 𝑅), then define 
 

𝑓 𝑥 = �𝑐𝑘 𝑥 − 𝑎 𝑘
∞

𝑘=0

,𝑎 − 𝑅 < 𝑥 < 𝑎 + 𝑅 

 
We can find 𝑓′ 𝑥  and ∫𝑓 𝑥 𝑑𝑥 as follows: 
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Term by Term 
Differentiation and Integration 

(a) 𝑓′ 𝑥 = ∑ 𝑑
𝑑𝑑

𝑐𝑘 𝑥 − 𝑎 𝑘∞
𝑘=0  

= ∑ 𝑘𝑐𝑘 𝑥 − 𝑎 𝑘−1∞
𝑘=0   

 
(b) ∫𝑓 𝑥 𝑑𝑥 = ∑ ∫𝑐𝑘 𝑥 − 𝑎 𝑘 𝑑𝑥∞

𝑘=0  

= ∑ 𝑐𝑘
𝑘+1

𝑥 − 𝑎 𝑘+1∞
𝑘=0 + 𝐶  

  
Both have radius of convergence 𝑅 and interval of 
convergence 𝑥 − 𝑎 < 𝑅. 
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Series Multiplication 

If ∑𝑎𝑛𝑥𝑛 and ∑𝑏𝑛𝑥𝑛 converge absolutely for 
𝑥 < 𝑅 and 

𝑐𝑛 = �𝑎𝑘𝑏𝑛−𝑘

𝑛

𝑘=0

 

then 

�𝑎𝑛𝑥𝑛 �𝑏𝑛𝑥𝑛 = �𝑐𝑛𝑥𝑛 

which also converges for 𝑥 < 𝑅. 
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Example 3 

The series 

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+
𝑥4

4!
+
𝑥5

5!
+ ⋯ 

converges to 𝑒𝑥 for all 𝑥. 
(a) Find the series for 𝑑

𝑑𝑑
𝑒𝑥 . 

(b) Find the series for ∫ 𝑒𝑥 𝑑𝑥. 
(c) Find the series for 𝑒−𝑥. 
(d) Multiply the series for 𝑒−𝑥 and 𝑒𝑥 to find 
𝑒−𝑥𝑒𝑥. 
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Example 3 (continued) 

Solution (a): 𝑒𝑥 = 1 + 𝑥 + 𝑥2

2!
+ 𝑥3

3!
+ 𝑥4

4!
+ 𝑥5

5!
+ ⋯ = ∑ 𝑥𝑘

𝑘!
∞
𝑘=0  

𝑑
𝑑𝑑 𝑒𝑥 = �

𝑑
𝑑𝑑

𝑥𝑘

𝑘!

∞

𝑘=0

 

= �𝑘
𝑥𝑘−1

𝑘!

∞

𝑘=0

 

= �
𝑥𝑘−1

𝑘 − 1 !

∞

𝑘=1

 

= �
𝑥𝑘

𝑘!

∞

𝑘=0

= 𝑒𝑥 
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Example 3 (continued) 

Solution (b): 𝑒𝑥 = ∑ 𝑥𝑘

𝑘!
∞
𝑘=0  

 

�𝑒𝑥 𝑑𝑥 = ��
𝑥𝑘

𝑘! 𝑑𝑥
∞

𝑘=0

 

 

= �
𝑥𝑘+1

𝑘 + 1 ∙ 𝑘!

∞

𝑘=0

+ 𝐶 

 

= �
𝑥𝑘+1

𝑘 + 1 !

∞

𝑘=0

+ 𝐶 

= 𝑥 +
𝑥2

2! +
𝑥3

3! +
𝑥4

4! +
𝑥5

5! + ⋯
+ 𝐶 

= −1 + 1 + 𝑥 +
𝑥2

2! +
𝑥3

3!

+
𝑥4

4! +
𝑥5

5! + ⋯+ 𝐶 

= −1 + �
𝑥𝑘

𝑘!

∞

𝑘=0

+ 𝐶 

= �
𝑥𝑘

𝑘!

∞

𝑘=0

+ 𝐶 = 𝑒𝑥 + 𝐶 
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Example 3 (continued) 

Solution (c): 𝑒𝑥 = ∑ 𝑥𝑘

𝑘!
∞
𝑘=0  

 

𝑒−𝑥 = �
−𝑥 𝑘

𝑘!

∞

𝑘=0

= � −1 𝑘 𝑥
𝑘

𝑘!

∞

𝑘=0
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Example 3 (continued) 

Solution (d): 𝑒𝑥 = ∑ 𝑥𝑘

𝑘!
∞
𝑘=0 , 𝑒−𝑥 = ∑ −1 𝑘 𝑥𝑘

𝑘!
∞
𝑘=0  

 

𝑒−𝑥𝑒𝑥 = �
𝑥𝑘

𝑘!

∞

𝑘=0

� −1 𝑘 𝑥
𝑘

𝑘!

∞

𝑘=0

= �𝑐𝑛𝑥𝑛
∞

𝑛=0

 

 

where 𝑎𝑘 = 1
𝑘!

 and 𝑏𝑘 = −1 𝑘

𝑘!
 and 

𝑐𝑛 = ∑ 𝑎𝑘𝑏𝑛−𝑘𝑛
𝑘=0 . 
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Example 3 (continued) 

𝑐𝑛 = �𝑎𝑘𝑏𝑛−𝑘

𝑛

𝑘=0

= �
1
𝑘!

𝑛

𝑘=0

∙
−1 𝑛−𝑘

𝑛 − 𝑘 ! = �
−1 𝑛−𝑘

𝑘! 𝑛 − 𝑘 !

𝑛

𝑘=0

 

 

𝑐0 =
−1 0−0

0! 0 − 0 ! = 1 

𝑐1 =
−1 1−0

0! 1 − 0 ! +
−1 1−1

1! 1 − 1 ! = −1 + 1 = 0 

𝑐2 =
−1 2−0

0! 2 − 0 ! +
−1 2−1

1! 2 − 1 ! +
−1 2−2

2! 2 − 2 ! =
1
2 − 1 +

1
2 = 0 

etc. 
𝑐𝑛 = 0, 𝑛 ≠ 0 
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Example 3 (continued) 

𝑒−𝑥𝑒𝑥 = �
𝑥𝑘

𝑘!

∞

𝑘=0

� −1 𝑘 𝑥
𝑘

𝑘!

∞

𝑘=0

 

 

= �𝑐𝑛𝑥𝑛
∞

𝑛=0

 

 
= 1 ∙ 𝑥0 + 0 ∙ 𝑥1 + 0 ∙ 𝑥2 + 0 ∙ 𝑥3 + ⋯ 
 
= 1 
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Advice 

Read the “Power Series” section in your 
textbook (including its exercises) – 
it will provide you with some excellent examples 
of how to identify a power series as a function 
by looking at either the derivative, the 
antiderivative of the series, or the product to 
two known series. 
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