Power Series

Part 2

 Differentiation \& Integration;

 Differentiation \& Integration;

 Multiplication of Power Series

 Multiplication of Power Series}

Theorem 1

If $\sum a_{n} x^{n}$ converges absolutely for $|x|<R$,
then $\sum a_{n}(f(x))^{n}$ converges absolutely for any continuous function f on $|f(x)|<R$.

Example 1

Since

$$
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}, \quad \text { for }|x|<1
$$

Theorem 1 tells us that

$$
\frac{1}{1-4 x^{2}}=\sum_{k=0}^{\infty}\left(4 x^{2}\right)^{k}, \quad \text { for }\left|4 x^{2}\right|<1
$$

Example 2

Find the interval of convergence of

$$
\sum_{k=0}^{\infty}\left(e^{x}-4\right)^{k}
$$

and, within this interval, the sum of the series as a function of x.

Example 2 (continued)

Solution: $\sum_{k=0}^{\infty}\left(e^{x}-4\right)^{k}$; Using the Ratio Test for Absolute Convergence:

$$
\begin{aligned}
\rho= & \lim _{k \rightarrow \infty} \frac{\left|u_{k+1}\right|}{\left|u_{k}\right|}=\lim _{k \rightarrow \infty} \frac{\left|\left(e^{x}-4\right)^{k+1}\right|}{\left|\left(e^{x}-4\right)^{k}\right|} \\
& =\lim _{k \rightarrow \infty}\left|e^{x}-4\right| \\
& =\left|e^{x}-4\right| \lim _{k \rightarrow \infty} 1 \\
& =\left|e^{x}-4\right|
\end{aligned}
$$

Therefore the series converges absolutely when $\rho=\left|e^{x}-4\right|<1$.

Example 2 (continued)

$$
\begin{gathered}
\rho=\left|e^{x}-4\right|<1 \\
-1<e^{x}-4<1 \\
3<e^{x}<5 \\
\ln 3<x<\ln 5
\end{gathered}
$$

Let's check what happens to the series at the endpoint of this interval.

Example 2 (continued)

At $x=\ln 3$, the series becomes

$$
\sum_{k=0}^{\infty}\left(e^{\ln 3}-4\right)^{k}=\sum_{k=0}^{\infty}(3-4)^{k}=\sum_{k=0}^{\infty}(-1)^{k}
$$

which diverges.
At $x=\ln 5$, the series becomes

$$
\sum_{k=0}^{\infty}\left(e^{\ln 5}-4\right)^{k}=\sum_{k=0}^{\infty}(5-4)^{k}=\sum_{k=0}^{\infty} 1
$$

which diverges.

Example 2 (continued)

The series $\sum_{k=0}^{\infty}\left(e^{x}-4\right)^{k}$ is a convergent geometric series ($a=1, r=e^{x}-4$) when $\ln 3<x<\ln 5$ and the sum is

$$
\frac{a}{1-r}=\frac{1}{1-\left(e^{x}-4\right)}=\frac{1}{5-e^{x}} .
$$

Power Series as Functions

If $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$ converges for $|x-a|<R$ (that is, $a-R<x<a+R$), then define

$$
f(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k}, a-R<x<a+R
$$

We can find $f^{\prime}(x)$ and $\int f(x) d x$ as follows:

Term by Term

Differentiation and Integration

$$
\begin{aligned}
& \text { (a) } f^{\prime}(x)=\sum_{k=0}^{\infty} \frac{d}{d x}\left(c_{k}(x-a)^{k}\right) \\
& \quad=\sum_{k=0}^{\infty} k c_{k}(x-a)^{k-1}
\end{aligned}
$$

(b) $\int f(x) d x=\sum_{k=0}^{\infty} \int c_{k}(x-a)^{k} d x$

$$
=\sum_{k=0}^{\infty} \frac{c_{k}}{k+1}(x-a)^{k+1}+C
$$

Both have radius of convergence R and interval of convergence $|x-a|<R$.

Series Multiplication

If $\sum a_{n} x^{n}$ and $\sum b_{n} x^{n}$ converge absolutely for $|x|<R$ and

$$
c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}
$$

then

$$
\left(\sum a_{n} x^{n}\right)\left(\sum b_{n} x^{n}\right)=\sum c_{n} x^{n}
$$

which also converges for $|x|<R$.

Example 3

The series

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots
$$

converges to e^{x} for all x.
(a) Find the series for $\frac{d}{d x}\left(e^{x}\right)$.
(b) Find the series for $\int e^{x} d x$.
(c) Find the series for e^{-x}.
(d) Multiply the series for e^{-x} and e^{x} to find $e^{-x} e^{x}$.

Example 3 (continued)

Solution (a): $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ $\frac{d}{d x}\left(e^{x}\right)=\sum_{k=0}^{\infty} \frac{d}{d x}\left(\frac{x^{k}}{k!}\right)$

$$
\begin{aligned}
=\sum_{k=0}^{\infty} k \frac{x^{k-1}}{k!} & \\
& =\sum_{k=1}^{\infty} \frac{x^{k-1}}{(k-1)!}
\end{aligned}
$$

$$
=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=e^{x}
$$

Example 3 (continued)

Solution (b): $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$
$\int e^{x} d x=\sum_{k=0}^{\infty} \int \frac{x^{k}}{k!} d x$
$=\sum_{k=0}^{\infty} \frac{x^{k+1}}{(k+1) \cdot k!}+C$
$=\sum_{k=0}^{\infty} \frac{x^{k+1}}{(k+1)!}+C$

$$
\begin{gathered}
=x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots \\
\quad+C \\
=-1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!} \\
\quad+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots+C \\
= \\
-1+\sum_{k=0}^{\infty} \frac{x^{k}}{k!}+C \\
=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}+C=e^{x}+C
\end{gathered}
$$

Example 3 (continued)

Solution (c): $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$

$$
e^{-x}=\sum_{k=0}^{\infty} \frac{(-x)^{k}}{k!}=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k}}{k!}
$$

Example 3 (continued)

Solution (d): $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}, e^{-x}=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k}}{k!}$

$$
e^{-x} e^{x}=\left(\sum_{k=0}^{\infty} \frac{x^{k}}{k!}\right)\left(\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k}}{k!}\right)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

where $a_{k}=\frac{1}{k!}$ and $b_{k}=\frac{(-1)^{k}}{k!}$ and
$c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$.

Example 3 (continued)

$$
\begin{aligned}
& \quad c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}=\sum_{k=0}^{n} \frac{1}{k!} \cdot \frac{(-1)^{n-k}}{(n-k)!}=\sum_{k=0}^{n} \frac{(-1)^{n-k}}{k!(n-k)!} \\
& c_{0}=\frac{(-1)^{0-0}}{0!(0-0)!}=1 \\
& c_{1}=\frac{(-1)^{1-0}}{0!(1-0)!}+\frac{(-1)^{1-1}}{1!(1-1)!}=-1+1=0 \\
& c_{2}=\frac{(-1)^{2-0}}{0!(2-0)!}+\frac{(-1)^{2-1}}{1!(2-1)!}+\frac{(-1)^{2-2}}{2!(2-2)!}=\frac{1}{2}-1+\frac{1}{2}=0 \\
& \quad \text { etc. } \quad n \neq 0
\end{aligned}
$$

Example 3 (continued)

$$
e^{-x} e^{x}=\left(\sum_{k=0}^{\infty} \frac{x^{k}}{k!}\right)\left(\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k}}{k!}\right)
$$

$$
=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

$$
=1 \cdot x^{0}+0 \cdot x^{1}+0 \cdot x^{2}+0 \cdot x^{3}+\cdots
$$

$$
=1
$$

Advice

Read the "Power Series" section in your textbook (including its exercises) -
it will provide you with some excellent examples of how to identify a power series as a function by looking at either the derivative, the antiderivative of the series, or the product to two known series.

© UFS, Inc.
http://math.sfsu.edu/beck/images/frazz.infinity.gif

