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Goal: Approximate 𝑓 𝑥  

Suppose we want to approximate 𝑓 𝑥  by a 
polynomial on an interval centered at 0: 
𝑓 𝑥 ≈ 𝑝 𝑥 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯+ 𝑐𝑛𝑥𝑛 

We will insist that: 
𝑓 0 = 𝑝 0  
𝑓′ 0 = 𝑝′ 0  
𝑓′′ 0 = 𝑝′′ 0  

⋮ 
𝑓 𝑛 0 = 𝑝 𝑛 0  
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Goal: Approximate 𝑓 𝑥  
Since 

𝑝 𝑥 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯+ 𝑐𝑛𝑥𝑛 
𝑝′ 𝑥 = 𝑐1 + 2𝑐2𝑥 + ⋯+ 𝑛𝑐𝑛𝑥𝑛−1 
𝑝′′ 𝑥 = 2𝑐2 + ⋯+ 𝑛 𝑛 − 1 𝑐𝑛𝑥𝑛−2 

⋮ 
𝑝 𝑛 𝑥 = 𝑛 ∙ 𝑛 − 1 ∙ ⋯ ∙ 1 ∙ 𝑐𝑛 = 𝑛! 𝑐𝑛 

we get 
𝑓 0 = 𝑝 0 = 𝑐0 
𝑓′ 0 = 𝑝′ 0 = 𝑐1 
𝑓′′ 0 = 𝑝′′ 0 = 2𝑐2 

⋮ 
𝑓 𝑛 0 = 𝑝 𝑛 0 = 𝑛! 𝑐𝑛 
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Goal: Approximate 𝑓 𝑥  

Solving for 𝑐𝑘’s we get: 
𝑓 0 = 𝑐0 
𝑓′ 0 = 𝑐1 
𝑓′′ 0

2
= 𝑐2 

⋮ 
𝑓 𝑛 0
𝑛!

= 𝑐𝑛 

J. Gonzalez-Zugasti, University of 
Massachusetts - Lowell 4 



𝑛-th Maclaurin Polynomial 

If 𝑓 can be differentiated 𝑛 times at 𝑥 = 0, then we 
define the 𝒏-th Maclaurin polynomial for 𝑓 to be 
 

𝑝𝑛 𝑥 = 𝑓 0 + 𝑓′ 0 𝑥 +
𝑓′′ 0

2!
𝑥2 + ⋯+

𝑓 𝑛 0
𝑛!

𝑥𝑛 

 

= �
𝑓 𝑘 0
𝑘!

𝑥𝑘
𝑛

𝑘=0
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Example 1 

Find the Maclaurin polynomials 𝑝0,𝑝1,𝑝2,𝑝3 
and 𝑝𝑛 for 𝑒𝑥. 
 
Solution: 
Here 𝑓 𝑥 = 𝑒𝑥. 
To help us find these polynomials, we will 
construct the following table: 
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Example 1 (continued) 
𝒏 =Term # 𝒇 𝒏 𝒙  𝒇 𝒏 𝟎  𝒇 𝒏 𝟎

𝒏!
 

𝒇 𝒏 𝒙
𝒏!

𝒙𝒏 

0 𝑓 𝑥 = 𝑒𝑥 𝑓 0 = 1 1
0!

= 1 
1 

1 𝑓′ 𝑥 = 𝑒𝑥 𝑓′ 0 = 1 1
1! = 1 

𝑥 

2 𝑓′′ 𝑥 = 𝑒𝑥 𝑓′′ 0 = 1 1
2! =

1
2 

1
2 𝑥

2 

3 𝑓′′′ 𝑥 = 𝑒𝑥 𝑓′′′ 0 = 1 1
3! =

1
6 

1
6 𝑥

3 

⋮ ⋮ ⋮ ⋮ ⋮ 
𝑛 𝑓 𝑛 𝑥 = 𝑒𝑥 𝑓 𝑛 0 = 1 1

𝑛! 
1
𝑛! 𝑥

𝑛 
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Example 1 (continued) 
Using our table, we find: 

𝑝0 𝑥 = 𝑓 0 = 1 

𝑝1 𝑥 = 𝑓 0 + 𝑓′ 0 𝑥 = 1 + 𝑥 

𝑝2 𝑥 = 𝑓 0 + 𝑓′ 0 𝑥 +
𝑓′′ 0

2! 𝑥2 = 1 + 𝑥 +
𝑥2

2  

𝑝3 𝑥 = 𝑓 0 + 𝑓′ 0 𝑥 +
𝑓′′ 0

2! 𝑥2 +
𝑓′′′ 0

3! 𝑥3 = 1 + 𝑥 +
𝑥2

2 +
𝑥3

6  

⋮ 

𝑝𝑛 𝑥 = 𝑓 0 + 𝑓′ 0 𝑥 +
𝑓′′ 0

2! 𝑥2 + ⋯+
𝑓 𝑛 0
𝑛! 𝑥𝑛 = 1 + 𝑥 +

𝑥2

2 +
𝑥3

6 + ⋯+
𝑥𝑛

𝑛!  
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𝑛-th Taylor Polynomial 
(To approximate 𝑓 𝑥  by a polynomial on an interval centered at 𝑥 = 𝑎.) 
 
If 𝑓 can be differentiated 𝑛 times at 𝑥 = 𝑎, then we define the 𝒏-th 
Taylor polynomial for 𝑓 about 𝑥 = 𝑎 to be 
 

𝑝𝑛 𝑥 = 𝑓 𝑎 + 𝑓′ 𝑎 𝑥 − 𝑎 +
𝑓′′ 𝑎

2!
𝑥 − 𝑎 2 + ⋯

+
𝑓 𝑛 𝑎
𝑛!

𝑥 − 𝑎 𝑛 
 

= �
𝑓 𝑘 𝑎
𝑘!

𝑥 − 𝑎 𝑘
𝑛

𝑘=0
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Example 2 

Find the Taylor polynomials 𝑝0,𝑝1,𝑝2,𝑝3 for 
sin 𝑥 about 𝑥 = 𝜋

3
. 

 
Solution: 
Here 𝑓 𝑥 = sin 𝑥. 
To help us find these polynomials, we will 
construct the following table: 
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Example 2 (continued) 
𝒏 = 

Term # 
𝒇 𝒏 𝒙  𝒇 𝒏 𝝅

𝟑
 𝒇 𝒏 𝝅

𝟑
𝒏!

 
𝒇 𝒏 𝝅

𝟑
𝒏!

𝒙 −
𝝅
𝟑

𝒏
 

0 𝑓 𝑥 = sin 𝑥 𝑓
𝜋
3

= sin
𝜋
3

 

=
3

2
 

3 2⁄
0!

=
3

2
 

3
2

 

1 𝑓′ 𝑥 = cos 𝑥 𝑓′
𝜋
3

= cos
𝜋
3

 

=
1
2

 

1 2⁄
1!

=
1
2

 
1
2
𝑥 −

𝜋
3

 

2 𝑓′′ 𝑥 = − sin 𝑥 𝑓′′
𝜋
3

= − sin
𝜋
3

 

= −
3

2
 

−
3 2⁄
2!

= −
3

4
 −

3
4

𝑥 −
𝜋
3

2
 

3 𝑓′′′ 𝑥 = − cos 𝑥 𝑓′′′
𝜋
3

= − cos
𝜋
3

 

= −
1
2

 

−
1 2⁄
3!

= −
1

12
 −

1
12

𝑥 −
𝜋
3

3
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Example 2 (continued) 

Using our table, we find: 
 

𝑝0 𝑥 = 𝑓
𝜋
3

 

=
3

2
 

 

𝑝1 𝑥 = 𝑓
𝜋
3

+ 𝑓′
𝜋
3

𝑥 −
𝜋
3

 

=
3

2
+

1
2
𝑥 −

𝜋
3
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Example 2 (continued) 

𝑝2 𝑥 = 𝑓
𝜋
3 + 𝑓′

𝜋
3 𝑥 −

𝜋
3 +

𝑓′′ 𝜋
3

2! 𝑥 −
𝜋
3

2
 

=
3

2 +
1
2 𝑥 −

𝜋
3 −

3
4 𝑥 −

𝜋
3

2
 

 

𝑝3 𝑥 = 𝑓
𝜋
3 + 𝑓′

𝜋
3 𝑥 −

𝜋
3 +

𝑓′′ 𝜋
3

2! 𝑥 −
𝜋
3

2

+
𝑓′′′ 𝜋

3
3! 𝑥 −

𝜋
3

3
 

=
3

2 +
1
2 𝑥 −

𝜋
3 −

3
4 𝑥 −

𝜋
3

2
−

1
12 𝑥 −

𝜋
3

3
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Maclaurin and Taylor Series 
As 𝑛 → ∞, we hope that the 𝑛-th Maclaurin/Taylor polynomials will converge to 𝑓 𝑥 . 
 
If 𝑓 has derivatives of all orders at 𝑥 = 𝑎, then we define the 
Taylor series for 𝑓 about 𝑥 = 𝑎 to be 
 

�
𝑓 𝑘 𝑎
𝑘! 𝑥 − 𝑎 𝑘

∞

𝑘=0

 

If 𝑎 = 0, then this is called the Maclaurin series for 𝑓 and is 

�
𝑓 𝑘 0
𝑘!

𝑥𝑘
∞

𝑘=0
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Example 3 

We saw in Example 1 that the 𝑛-th Maclaurin 
polynomial for 𝑒𝑥 is 

𝑝𝑛 𝑥 = 1 + 𝑥 +
𝑥2

2
+
𝑥3

6
+ ⋯+

𝑥𝑛

𝑛!
= �

𝑥𝑘

𝑘!

𝑛

𝑘=0

 

So the Maclaurin series for 𝑒𝑥 is 

�
𝑥𝑘

𝑘!

∞

𝑘=0
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Example 4 

Find the Taylor series for 1
𝑥
 about 𝑥 = 1. 

 
Solution: 

Here 𝑓 𝑥 = 1
𝑥
. 

To help us find this series, we will construct the 
following table: 
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Example 4 (continued) 
𝒏 = 

Term # 
𝒇 𝒏 𝒙  𝒇 𝒏 𝟏  𝒇 𝒏 𝟏

𝒏!  
𝒇 𝒏 𝟏
𝒏! 𝒙 − 𝟏 𝒏 

0 1
𝑥 

1 1
0! = 1 

1 

1 −1 ∙
1
𝑥2 

−1 −1
1! = −1 

− 𝑥 − 1  

2 −1 −2
1
𝑥3 

2 2
2! = 1 

𝑥 − 1 2 

3 −1 −2 −3
1
𝑥4 

−6 −6
3! = −1 

− 𝑥 − 1 3 

⋮ 

𝑛 −1 −2 −3 ⋯ −𝑛
1

𝑥𝑛+1 
 

= −1 𝑛 𝑛!
1

𝑥𝑛+1 

−1 𝑛 𝑛!  −1 𝑛 𝑛!
𝑛!  

 
= −1 𝑛 

−1 𝑛 𝑥 − 1 𝑛 
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Example 4 (continued) 

Using the table, we see that the Taylor series for 
1
𝑥
 about 𝑥 = 1 is 

� −1 𝑘 𝑥 − 1 𝑘
∞

𝑘=0
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Naming the Maclaurin/Taylor Series 

 Brook Taylor (British) did not invent Taylor series, and Maclaurin 
series were not developed by Colin Maclaurin (Scottish).  
 James Gregory (Scottish) was working with Taylor series when Taylor 
was only a few years old. Gregory also published the Maclaurin series for 
many trigonometric functions ten years before Maclaurin was born. 
 Taylor was not aware of Gregory's work when he published his 
book  Methodus incrementorum directa et inversa, which contained what we 
now call Taylor series. Maclaurin quoted Taylor's work in a calculus book he 
wrote in 1742. Maclaurin's book popularized series representations of 
functions, and although Maclaurin never claimed to have discovered them, 
Taylor series centered at a = 0 later became known as Maclaurin series.  
 History balanced things in the end. Maclaurin, a brilliant 
mathematician, was the original discoverer of the rule for solving systems of 
equations that we now call Cramer's rule.  
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