Convergence of Taylor Series

Part 1

n-th Remainder

If we approximate f by its n-th Taylor polynomial about $x=a, p_{n}(x)$,
then the error at x is

$$
R_{n}(x)=f(x)-p_{n}(x)
$$

$R_{n}(x)$ is called the \boldsymbol{n}-th remainder.

Taylor's Theorem

Suppose f can be differentiated $n+1$ times at each point in an interval containing the point a.

Then for each x in the interval, there is at least one point c between a and x such that

$$
R_{n}(x)=f(x)-p_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

Taylor's Formula With Remainder

$f(x)=p_{n}(x)+R_{n}(x)$

$$
\begin{aligned}
& =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& +\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
\end{aligned}
$$

Side Note

The n-th remainder formula

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

was not due to Taylor, but rather to Lagrange. For this reason, it is frequently called Lagrange's form of the remainder.

Theorem

The equality

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

holds if and only if
$\lim _{n \rightarrow \infty} R_{n}(x)=0$.

Example 1

Show that the Maclaurin series for e^{x} converges to e^{x} for all x.

Solution:

The Maclaurin series for e^{x} is

$$
\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

Example 1 (continued)

Taylor's Formula says:

$$
f(x)=p_{n}(x)+R_{n}(x)
$$

where

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

Using $f(x)=e^{x}$ and $a=0$ we get,

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\frac{e^{c}}{(n+1)!} x^{n+1}
$$

where c is between 0 and x.

Example 1 (continued)

We must show that $\lim _{n \rightarrow \infty} R_{n}(x)=0$.

$$
\lim _{n \rightarrow \infty} R_{n}(x)=\lim _{n \rightarrow \infty} \frac{e^{c}}{(n+1)!} x^{n+1}
$$

Since $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ converges for all x, we know

$$
\lim _{k \rightarrow \infty} \frac{x^{k}}{k!}=0 .
$$

Now we will consider 3 cases:

Example 1 (continued)

Case 1: $x>0$

$$
\begin{gathered}
0<c<x \\
0<e^{c}<e^{x} \\
0<e^{c} \frac{x^{n+1}}{(n+1)!}<e^{x} \frac{x^{n+1}}{(n+1)!} \\
0<R_{n}(x)<e^{x} \frac{x^{n+1}}{(n+1)!}
\end{gathered}
$$

Since

$$
\lim _{n \rightarrow \infty} e^{x} \cdot \frac{x^{n+1}}{(n+1)!}=e^{x} \lim _{n \rightarrow \infty} \frac{x^{n+1}}{(n+1)!}=0
$$

the Pinching Theorem tells us

$$
\lim _{n \rightarrow \infty} R_{n}(x)=0
$$

Example 1 (continued)

Case 2: $x<0$

$$
\begin{gathered}
x<c<0 \\
0<e^{c}<1 \\
0<e^{c}\left|\frac{x^{n+1}}{(n+1)!}\right|<\left|\frac{x^{n+1}}{(n+1)!}\right| \\
0<\left|R_{n}(x)\right|<\left|\frac{x^{n+1}}{(n+1)!}\right|
\end{gathered}
$$

Since

$$
\lim _{n \rightarrow \infty} \frac{x^{n+1}}{(n+1)!}=0
$$

the Pinching Theorem tells us that $\lim _{n \rightarrow \infty}\left|R_{n}(x)\right|=0$ and therefore $\lim _{n \rightarrow \infty} R_{n}(x)=0$.

Example 1 (continued)

Case 3: $x=0$
Convergence is obvious in this case since

$$
\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+0+0+0+\cdots
$$

The Remainder Estimation Theorem

If there exists a positive constant M such that

$$
\left|f^{(n+1)}(t)\right| \leq M, \quad t \text { between } x \text { and } a
$$

then

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}
$$

Example 2

For approximately what values of x can you replace $\sin x$ by $x-x^{3} / 6$ with an error of magnitude no greater than 2×10^{-4} ?

Solution:

Here $f(x)=\sin x$.
All of the derivative are $\pm \sin x$ or $\pm \cos x$.

Example 2 (continued)

So

$$
\left|f^{(n+1)}(t)\right| \leq 1=M \text { for all } x
$$

By the Remainder Estimation Theorem

$$
\left|R_{n}(x)\right| \leq \frac{1}{(n+1)!}|x|^{n+1}
$$

Recall that

$$
x-x^{3} / 6
$$

Is the 3 -rd Maclaurin polynomial of $\sin x$.

So we will choose $n=3$.

Example 2 (continued)

$$
\begin{gathered}
\left|R_{n}(x)\right| \leq \frac{1}{(n+1)!}|x|^{n+1} \\
\left|R_{3}(x)\right| \leq \frac{1}{(3+1)!}|x|^{3+1} \\
\left|R_{3}(x)\right| \leq \frac{1}{24}|x|^{4}
\end{gathered}
$$

and we want

$$
\left|R_{3}(x)\right| \leq 2 \times 10^{-4}
$$

Example 2 (continued)

$$
\left|R_{3}(x)\right| \leq \frac{1}{24}|x|^{4} \leq 2 \times 10^{-4}
$$

Solving for x we get:

$$
\begin{gathered}
\frac{1}{24}|x|^{4} \leq 2 \times 10^{-4} \\
|x|^{4} \leq 48 \times 10^{-4} \\
|x| \leq \sqrt[4]{48} \times 10^{-1} \approx 0.26321
\end{gathered}
$$

Example 2 (continued)

So the answer to:
For approximately what values of x can you replace $\sin x$ by $x-x^{3} / 6$ with an error of magnitude no greater than 2×10^{-4} ?
is:

$$
|x| \leq \sqrt[4]{48} \times 10^{-1} \approx 0.26321
$$

Frequently used Maclaurin Series

$$
\begin{aligned}
& \frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\cdots=\sum_{n=0}^{\infty} x^{n}, \quad|x|<1 \\
& \frac{1}{1+x}=1-x+x^{2}-\cdots+(-x)^{n}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{n}, \quad|x|<1 \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad|x|<\infty \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}, \quad|x|<\infty \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}, \quad|x|<\infty \\
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}, \quad-1<x \leq 1 \\
& \tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots+(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}, \quad|x| \leq 1
\end{aligned}
$$

Q: Why do truncated Maclaurin Series fit the original function so well?

 A: Because they are "Taylor" made.http://web2.uwindsor.ca/math/hlynka/mathfun.html

http://www.peterstone.name/Maplepgs/taylor.html

