Convergence of Taylor Series

Part 2

Using Taylor Series

Since every Taylor series is a power series, the operations of adding, subtracting, and multiplying Taylor series are all valid on the intersection of their intervals of convergence.

Example 1

Find the Taylor series at $x=0$ of $e^{-6 x}$.

Solution:

Since

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

we get

$$
e^{-6 x}=\sum_{k=0}^{\infty} \frac{(-6 x)^{k}}{k!}
$$

Example 2

Find the Taylor series at $x=0$ of $3 x e^{x}$.

Solution:
Since

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

we get

$$
3 x e^{x}=3 x \sum_{k=0}^{\infty} \frac{x^{k}}{k!}=\sum_{k=0}^{\infty} \frac{3 x^{k+1}}{k!}
$$

Example 3

Find the Taylor series for $x^{2} \cos \frac{\pi x}{2}$ at $x=0$.

Solution:

Since

$$
\cos x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}
$$

we get

Example 3 (continued)

$$
\begin{aligned}
\cos \frac{\pi x}{2} & =\sum_{k=0}^{\infty}(-1)^{k} \frac{\left(\frac{\pi x}{2}\right)^{2 k}}{(2 k)!} \\
& =\sum_{k=0}^{\infty}(-1)^{k}\left(\frac{\pi}{2}\right)^{2 k} \frac{x^{2 k}}{(2 k)!}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
x^{2} \cos \frac{\pi x}{2} & =x^{2} \sum_{k=0}^{\infty}(-1)^{k}\left(\frac{\pi}{2}\right)^{2 k} \frac{x^{2 k}}{(2 k)!} \\
& =\sum_{k=0}^{\infty}(-1)^{k}\left(\frac{\pi}{2}\right)^{2 k} \frac{x^{2 k+2}}{(2 k)!}
\end{aligned}
$$

Example 4

Find the Taylor series at $x=0$ of $\frac{x^{2}}{1-x}$.

Solution:

Since

$$
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}
$$

we get

$$
\frac{x^{2}}{1-x}=x^{2} \sum_{k=0}^{\infty} x^{k}=\sum_{k=0}^{\infty} x^{k+2}
$$

Example 5

Find the first four nonzero terms in the Maclaurin series for

$$
f(x)=e^{-6 x} \sin x
$$

Solution:
We will use the Taylor series for $e^{-6 x}$ and $\sin x$ and then use:
If $\sum a_{n} x^{n}$ and $\sum b_{n} x^{n}$ converge absolutely for $|x|<R$ and

$$
c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}
$$

then

$$
\left(\sum a_{n} x^{n}\right)\left(\sum b_{n} x^{n}\right)=\sum c_{n} x^{n}
$$

which also converges for $|x|<R$.

Example 5 (continued)

$e^{-6 x}=\sum_{k=0}^{\infty} \frac{(-6 x)^{k}}{k!}=1-6 x+18 x^{2}-36 x^{3}+54 x^{4}-\cdots$
So we will let $a_{0}=1, a_{1}=-6, a_{2}=18, a_{3}=-36, a_{4}=54$.
$\sin x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}$

$$
=0+x+0 \cdot x^{2}-\frac{1}{6} x^{3}+0 \cdot x^{4}+\cdots
$$

So we will let $b_{0}=0, b_{1}=1, b_{2}=0, b_{3}=-\frac{1}{6}, b_{4}=0$.

Example 5 (continued)

$$
c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}
$$

$$
\begin{aligned}
c_{0}= & a_{0} b_{0} \\
& =1 \cdot 0=0 \\
c_{1}= & a_{0} b_{1}+a_{1} b_{0} \\
& =1 \cdot 1+(-6) \cdot 0=1 \\
c_{2}= & a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0} \\
& =1 \cdot 0+(-6) \cdot 1+18 \cdot 0=-6 \\
c_{3}= & a_{0} b_{3}+a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{0} \\
& =1 \cdot\left(-\frac{1}{6}\right)+(-6) \cdot 0+18 \cdot 1+(-36) \cdot 0=\frac{107}{6} \\
c_{4}= & a_{0} b_{4}+a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1}+a_{4} b_{0} \\
= & 1 \cdot 0+(-6)\left(-\frac{1}{6}\right)+18 \cdot 0+(-36) \cdot 1+54 \cdot 0=-35
\end{aligned}
$$

Example 5 (continued)

Therefore
$e^{-6 x} \sin x=\left(\sum_{k=0}^{\infty} \frac{(-6 x)^{k}}{k!}\right)\left(\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}\right)$
$=\sum_{k=0}^{\infty} c_{n} x^{n}$
$=x-6 x^{2}+\frac{107}{6} x^{3}-35 x^{4}+\cdots$

Example 6

Find the first four nonzero terms in the Maclaurin series for $\frac{3}{(1+x)^{2}}$.

Solution:
Since

$$
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}
$$

we get

$$
\frac{1}{1+x}=\sum_{k=0}^{\infty}(-x)^{k}=\sum_{k=0}^{\infty}(-1)^{k} x^{k}
$$

Example 6 (continued)

Notice that

$$
\frac{d}{d x}\left(\frac{1}{1+x}\right)=\frac{-1}{(1+x)^{2}}
$$

and that

$$
\begin{gathered}
\frac{d}{d x}\left(\frac{1}{1+x}\right)=\frac{d}{d x}\left(\sum_{k=0}^{\infty}(-1)^{k} x^{k}\right) \\
=\sum_{k=0}^{\infty} \frac{d}{d x}\left((-1)^{k} x^{k}\right) \\
=\sum_{k=0}^{\infty}(-1)^{k} k x^{k-1}
\end{gathered}
$$

Example 6 (continued)

Using these results we get:

$$
\begin{aligned}
\frac{3}{(1+x)^{2}} & =-3 \frac{-1}{(1+x)^{2}} \\
= & -3 \sum_{k=0}^{\infty}(-1)^{k} k x^{k-1} \\
= & \sum_{k=0}^{\infty}(-1)^{k+1} 3 k x^{k-1} \\
= & 3-6 x+9 x^{2}-12 x^{3}+\cdots
\end{aligned}
$$

Why You Need to Know Taylor Series

Russian physicist Igor Tamm won the Nobel Prize in physics in 1958. During the Russian revolution, he was a physics professor at the University of Odessa in the Ukraine. Food was in short supply, so he made a trip to a nearby village in search of food. While he was in the village, a bunch of anti-communist bandits surrounded the town.

The leader was suspicious of Tamm, who was dressed in city clothes. He demanded to know what Tamm did for a living. He explained that he was a university professor looking for food. "What subject?," the bandit leader asked. Tamm replied "I teach mathematics."
"Mathematics?" said the leader. "OK. Then give me an estimate of the error one makes by cutting off a Maclaurin series expansion at the nth term. Do this and you will go free. Fail, and I will shoot you."

Tamm was not just a little astonished. At gunpoint, he managed to work out the answer. He showed it to the bandit leader, who perused it and then declared "Correct! Go home." Tamm never discovered the name of the bandit. didn't know", by John Barrow.
http://math.stackexchange.com/questions/28885/anecdotes-about-famous-mathematicians-or-physicists

