MATH 3850 Fall 2025

Exam 2

November 13, 2025

- 1. Suppose that you input in R: y<-c(2,4,2,3,1,6,7,5,10,1,7). Find the following: (a) y[8], (b) sort(y)[8], (c) quantile(y, 0.5).
- 2. Let Y_1, \ldots, Y_n be iid, where each Y has a pdf $f_Y(y) = 24y^{-4}$, $2 < y < \infty$. Find $\operatorname{se}(\overline{Y})$.
- 3. Let Y_1, \ldots, Y_n be iid Poisson(9). Find $P(\overline{Y} \leq 8.5)$ for the sample size n = 36 (as the last step, should write an R code using pnorm).
- 4. Let Y_{1i} , $i = 1, ..., n_1$ be iid Exponential (θ_1) , let Y_{2j} , $j = 1, ..., n_2$ be iid Exponential (θ_2) , with independence between Y_{1i} 's and Y_{2j} 's. Let $\overline{Y}_1 = \sum_{i=1}^{n_1} Y_{1i}/n_1$ and $\overline{Y}_2 = \sum_{j=1}^{n_2} Y_{2j}/n_2$. If we want to test $H_0: \theta_1 = \theta_2$ versus $H_A: \theta_1 > \theta_2$, and we know that both n_1 and n_2 are large, please provide the test statistic in this case, along with the corresponding rejection region.
- 5. Suppose that we have read in a dataset named exam2 with a column name Y, in R. We know that there are less than 30 data points, but there are some missing (NA) values. We want to test $H_0: \mu = 5$ versus $H_A: \mu \neq 5$, at the level $\alpha = 0.01$. For the fear of making clerical errors, we want to use R to compute both the test statistic and the critical value; please perform these tasks with the information given.