MATH 3850 Fall 2025

Homework 3

Due Thursday, September 25

- 1. If Y has the pdf $f_Y(y) = cye^{-2y}$, y > 0, find the value c (recall that the pdf must integrate to one).
- 2. Suppose that a random variable Y has the pdf

$$f_Y(y) = ye^{-y}, \quad y \ge 0.$$

Find the expected value of Y.

3. Suppose that a random variable Y has the pdf

$$f_Y(y) = \frac{3}{64}y^2(4-y), \quad 0 < y < 4$$

Find the expected value and variance of Y.

4. If $Y \sim N(\mu, \sigma^2)$ so that it has the pdf

$$f_Y(y) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}, \quad -\infty < y < \infty$$

show that $E(Y) = \mu$ by starting with $E(Y) = \int y f_Y(y) dy$ and performing the integration. (HINT: Consider a substitution $z = (y - \mu)/\sigma$; also the fact that the pdf integrates to one will be helpful).

- 5. If Y is a normal random variable with parameters $\mu = 10$ and $\sigma^2 = 36$, compute
 - (a) P(Y > 5)
 - (b) P(4 < Y < 16)
- 6. If Z is a standard normal random variable, find the value z_0 such that
 - (a) $P(Z > z_0) = 0.5$
 - (b) $P(-z_0 < Z < z_0) = 0.9$
- 7. If Y has an exponential distribution and P(Y > 2) = 0.0821, what is (a) $\beta = E(Y)$ and (b) $P(Y \le 1.7)$? (Hint: Use the cdf of exponential).
- 8. The time (in hours) required to repair a machine is an exponentially distributed random variable with parameter $\beta=2$. What is the probability that a repair time (a) exceeds 2 hours, (b) is at most 3.5 hours, (c) is between 2.3 and 5.2 hours? Solve this problem without using R.
- 9. Repeat the previous problem using R, providing the codes and numerical answers.

- 10. Let $Y \sim \text{Gamma}(2.1, 3.5)$. Find (a) P(Y = 4), (b) P(Y > 5), (c) P(4 < Y < 16).
- 11. Consider a random variable Y with the pdf

$$f_Y(y) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{\alpha - 1} (1 - y)^{\beta - 1}, \quad 0 \le y \le 1$$

where $\alpha > 0$ and $\beta > 0$. If $\alpha = 4$ and $\beta = 2$, find $P(Y \le 0.9)$.

12. Suppose that a random variable Y has a pdf given by $f_Y(y) = ky^3e^{-y/2}$, y > 0. Find the value of k (try to avoid integration) and conclude that Y follows a χ^2 distribution.