MATH 3850 Fall 2025

Homework 5

Due Thursday, October 9

- 1. Let Y_1, \ldots, Y_n be iid Poisson(λ). Find $E(\overline{Y})$ and $\operatorname{se}(\overline{Y})$, and use these information to create a Z-score based on \overline{Y} (see Lecture 8, page 11).
- 2. Let Y_1, \ldots, Y_n be iid Gamma $(\alpha, 1)$. Find $E(\overline{Y})$ and $\operatorname{se}(\overline{Y})$, and use these information to create a Z-score based on \overline{Y} .
- 3. Let $Y \sim \text{Binomial}(n, p)$, and consider a statistic Y/n. Find E(Y/n) and se(Y/n), and use these information to create a Z-score based on Y/n.
- 4. Let Y_{1i} with $i=1,\ldots,n_1$ be iid $N(\mu_1,\sigma_1^2)$, and let Y_{2j} with $j=1,\ldots,n_j$ be iid $N(\mu_2,\sigma_2^2)$, with independence between Y_{1i} 's and Y_{2j} 's. Let $\overline{Y}_1 = \sum_{i=1}^{n_1} Y_{1i}/n_1$ and $\overline{Y}_2 = \sum_{j=1}^{n_2} Y_{2j}/n_2$. Find (a) $\operatorname{se}(\overline{Y}_1 + \overline{Y}_2)$ and (b) $\operatorname{se}(\overline{Y}_1 \overline{Y}_2)$.
- 5. Let Y_1, \ldots, Y_n be iid, where each Y has a pdf $f_Y(y) = 3y^2$, $0 \le y \le 1$. Find $E(\overline{Y})$ and $\operatorname{se}(\overline{Y})$.
- 6. Let Y_1, \ldots, Y_n be iid, where each Y has a pdf $f_Y(y) = 4y^2e^{-2y}$, y > 0. Find $E(\overline{Y})$ and $\operatorname{se}(\overline{Y})$.
- 7. A (sample) coefficient of variation (CV) is a statistic defined as $CV = S/\overline{Y}$. Although it is extremely difficult to derive a sampling distribution directly, we can find a related distribution under special circumstances:
 - Let Y_1, \ldots, Y_n be iid $N(0, \sigma^2)$. Show that $n(\overline{Y})^2/S^2$ follows an F-distribution and determine its d.f.s.
 - (Consequently, $S^2/[n(\overline{Y})^2]$ also follows an F-distribution and is directly related to CV).
- 8. Let Y_1, \ldots, Y_n be iid $N(0, \sigma^2)$. If n = 4, find $P(2\overline{Y} > S)$ (Hint: Recall the composition of T Lecture 8, page 17 and rearrange the terms inside the probability. Then you may use R to compute the probability).
- 9. Suppose that we have the same set up as in Problem 4. In addition, let

$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (Y_{1i} - \overline{Y}_1)^2$$
 and $S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_{2j} - \overline{Y}_2)^2$

- If $\sigma_1^2 = \sigma_2^2$, and if $n_1 = 10$ and $n_2 = 9$, find $P(S_1 > S_2)$ (Hint: Recall the composition of F Lecture 8, pages 19-20 and rearrange the terms inside the probability. Then you may use R to compute the probability).
- 10. Please find the dataset hw5.10.txt. Using R, find (a) \overline{Y} , (b) S, (c) the sample median M (please verify with the formula for M), (d) IQR and the sample range R, (e) the 6-th order statistic, (f) the 84-th sample quantile.
- 11. Repeat Problem 10 with the dataset hw5.11.txt.
- 12. Repeat Problem 10 with the dataset hw5.12.csv.