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Analysis of Variance (ANOVA)
MATH 5910
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ANOVA

fWha’[ IS it?

# Linear model (as in regression)
s Continuous response.
» Discrete independent variables.

o How different from regression?
» Presentation (ANOVA table).
s Interpretation.

o |
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One-Way ANOVA
W

ord model - similar to simple regression
Y = X

where Y is the (continuous) response and X is the
iIndependent variable as before BUT is now discrete.

Formally. ..

o |
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One-Way ANOVA
E

WO representations.
# Means model:

where
o Effects model:
where

so that

o
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One-Way ANOVA
B . o

® Noten=>__,n

® Assume ¢;; ~ i.i.d. N(0,02).

o |
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One-Way ANOVA

nypotheses.

® Means model:
versus H 4 : at least one p; different.

o Effects model:
Ho:()q:-”:()z[

versus H 4 : at least one «; different.

Perform F-test for either hypothesis.

o |
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One-Way ANOVA

- N

n either case, we have the ANOVA table (corrected):

Source d.f. SS MS F

Treatment | I — 1 | SStyeqr | MST,c0r | MST,00i/MSE
Residual |n—171| SSE MSE
Total n—11] SST

SSt,0t: Sum of squares for treatment.
SSE: Sum of squares for error (residual), same as RSS
SST: Sum of squares total.

And the MS is the mean squares (SS divided by d.f.).

o |
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One-Way ANOVA

I
SSTfreat — an(? ~-Y

SSE = S‘S‘
1=1 5=1
SST = YTY—n72—YY Yij —
1=1 j5=1
where
Zz 12?;1 Yij - Z?=1 Yi;
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One-Way ANOVA
- -

o The “Treatment” row is referred as “Between Group”
because it looks at variation between levels of a
treatment (groups)

# The “Residual” row is referred as “Within Group”
because it looks at error (residual) variation; recall that
62 = MSp.sia = MSE

o |
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One-Way ANOVA
-

Note that in regression, we had MSg,,;; which is the
same as MSE.

In addition, we had SSg,, instead of SS..4: I
regression.

It can be seen that

SSTreqt + SSE = SST

|
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Estimation

- N

o Can compute ji; or 1 and &;.

# However, there are different ways to compute them.
s Set-to-zero, sum-to-zero, etc.

# Estimation not important here.

# Instead, the F-test more important.

o |
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Example 1
. -

Irst example

a <- c¢(1,1,1,1,2,2,3,3,3,3,3)
Yy <-— C(3r4151513121 91121518/5)

Fit a model
Yij = p+a; + ey
where
i=1,2,3, j=1....n
nt =4, no =2, ng=>9
so that n = 11.

o |
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Example 1
W -

e may try aov () function, with the following

> aov(y a)
Call:

aov (formula = vy a)

Terms:
a Residuals
Sum of Squares 30.39054 58.33673

Deg. of Freedom 1 9

Residual standard error: 2.54595

Estimated effects may be unbalanced

LSee anything(s) odd? J
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Example 1
W

e will need a fix; with factor ()

> aov (y factor(a))
Call:

aov (formula = y - factor(a))

Terms:

factor (a) Residuals
Sum of Squares 50.67727 38.05000
Deg. of Freedom 2 8

Residual standard error: 2.180883

Estimated effects may be unbalanced

LMuch better. J
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B

etter yet,

Example 1

> summary (aov (y~ factor(a)))

factor (a)

Residuals

Signif.

codes: 0 *%*%

Df Sum Sg Mean Sgq F wvalue Pr (>F)
50.68 25.339
38.05 4,756

We now get a familiar ANOVA table.

Note that “Total” row is suppressed.

o

0.001 »» 0.01 = 0.05

5.327 0.0338 *

0.1 1
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Example 1

fC

an also do

> anova (lm(y factor(a)))
Analysis of Variance Table

Response: vy

Df Sum Sg Mean Sg F wvalue

2 50.0677 25.3386
8 33.050 4.75062

factor (a)

Residuals

Signif. codes: 0 »xx 0.001

o

Pr (>F)
5.3274 0.03382 =«

*+x 0.01 = 0.05 . 0.1 1
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Example 1
L

ook at the box plot: boxplot (y~“factor (a))

12

10

. ; ; ; -
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Example 2
A

# From R help file.

nother example.

> ctl <- ¢c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
> trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)

> group <—- gl(2,10,20, labels=c("Ctl","Trt"))
> group

[1] Ctl Ctl Ctl Ctl Ctl Ctl Ctl Ctl Ctl Ctl Trt Trt Trt Trt Trt Trt Trt
Levels: Ctl Trt

> welght <- c(ctl, trt)

> welght
[1] 4.17 5.58 5.18 6.11 4.50 4.61 5.17 4.53 5.33 5.14 4.81 4.17 4.41 3.5

o |

Analvsis of Variance (ANOVA) —-p. 18



Example 2

fPerform one-way ANOVA with 2 levels (use anova ()
function).

> anova (lm.D9 <- 1Im(weight =~ group))

Analysis of Variance Table

Response: weight

Df Sum Sg Mean Sg F wvalue Pr (>F)
group 1 0.6882 0.68820 1.4191 0.249
Residuals 18 8.7292 0.48496

Note again that “Total” row is suppressed.

o |
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Example 2
W -

hat if you do summary () ?

> summary (1lm.D9)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 5.0320 0.2202 22.850 9.55e—-15 *xx*x=x%
groupTrt -0.3710 0.3114 -1.191 0.249

Signif. codes: 0 xxx 0.001 %% 0.01 = 0.05 . 0.1 1

Residual standard error: 0.6964 on 18 degrees of freedom
Multiple R-squared: 0.07308,Adjusted R-squared: 0.02158
F-statistic: 1.419 on 1 and 18 DF, p-value: 0.249

LEstimates value for Trt in group, but not for ct 1 (why?). J

Analvsis of Variance (ANOVA) — p. 20



T-test

f’ Notice that p-values for both F-test and t-test are the T
same (0.249).

# Are they related somehow?
# Let’s find out...

o |
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T-test

fCan use original data: ct1, trt.

> t.test (ctl,trt,var.equal=T)
Two Sample t-test

data: ctl and trt
t =1.1913, df = 18, p-value = 0.249
alternative hypothesis: true difference in means 1is
not equal to O
95 percent confidence interval:
-0.2833003 1.0253003
sample estimates:
mean of x mean of y
5.032 4.661

o |
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°

T-test

Since t = 1.1913 (previous page) and F' = 1.491
And

> 1.191372
[1] 1.41919¢0

You see that F is a square of t (subject to round-off
error).
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Sum of Squares

-

fFor computing the sum of squares “by hand” (NOT done
here). Recall

I I n;
SSTrea,t — an(vz — 7..)2, SSE — S: S:O/@] — 7@)2
i=1 i=1 j=1
SST = YY-nY =) ) (V;; -V.)?
i=1 j=1
where
% :72276;12?;13/73]' and V _Z?ﬂyfi'
) n ' n;
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Sum of Squares
b

® Y. - Thisis simply mean (weight)

ossible to compute (using the current data)

® Y, - Here, we have tapply (weight, group, mean)

® n; - Similarly, this is
tapply (weight, group, Llength)

All others quantities are just straight forward applications
(although could be tedious).

o |
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Estimates
-

ecall

> summary (1lm.D9)

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 5.0320 0.2202 22.850 9.55e—-15 #*xx%
groupTrt -0.3710 0.3114 -1.191 0.249

Signif. codes: 0 xxx 0.001 %+« 0.01 = 0.05 . 0.1 1

Residual standard error: 0.6964 on 18 degrees of freedom
Multiple R-squared: 0.07308,Adjusted R-squared: 0.02158
F-statistic: 1.419 on 1 and 18 DF, p-value: 0.249

o |
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Estimates

-

fMa’[ch the estimate numbers of summary (1m.D9). To
start, set up a design matrix

> X<-cbind(rep(1l,20),rep(c(l,0),each=10),
rep(c(0,1),each=10))

Any Problems?

o |
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Estimates

fTo fix this, R imposes set-to-zero constraint with first T
estimate set at 0 (i.e., a; = 0).

To set this with the design matrix, do the following:

> X1<-cbind(rep(1l,20),rep(c(0,1),each=10))

o |
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Estimates

fThen T

> y<-weilght
> beta.hat<-solve (Lt (X1) 3*3X1) $*3L (X1) $*3Yy
> beta.hat

[, 1]

[1,] 5.032
[2,] -0.371
As desired.

o |
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Estimates

A

lternatively, use the means model:

> summary (lm(weight =~ group-1))
Coefficients:

Estimate Std. Error t wvalue Pr(>]|t])
groupCtl 5.0320 0.2202 22.85 9.55e-15 x*x%*
groupTrt 4.6610 0.2202 21.16 3.62e—-14 *x*xx%

Signif. codes: 0 xxx 0.001 %%« 0.01 = 0.05 . 0.1 1

Residual standard error: 0.6964 on 18 degrees of freedom
Multiple R-squared: 0.9818,Adjusted R-squared: 0.9798
F-statistic: 485.1 on 2 and 18 DF, p-value: < 2.2e-16

o
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Estimates

fCheck: T

> X2<-cbind(rep(c(1l,0),each=10),
rep(c(0,1),each=10))
> mu.hat<-solve (L (X2) $*3X2) $*xSL (X2) $*x3y
> mu.hat
[, 1]
(1,] 5.032
(2,] 4.0601

As expected.

o |
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Box Plot
L

et us look at the box plot: boxplot (weight ~ group)

6.0

55

5.0

4.5

4.0

o0 _|
™ I I
Ctl Trt
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Design Consideration

f.o Because ANOVA F-test and t-test are related (in T
one-way, 2-level case).

# ANOVA needs to follow the t-test assumptions.
® From e;; ~i.id. N(0,0%)
s Data Y;; must be normal, which follows from model.

» Data must be independent within and between
groups, which is required in linear models.

» Constant variance assumption must be satisfied as
well.

o |
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Design Consideration

- N

# |In particular, the assignment of treatments to groups
must be random.

# In other words, we must have CRD (completely
randomized design) for correct analysis of one-way
ANOVA.

# More design revelations in higher-way ANOVA. ..

o |
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Two-Way ANOVA
-

# How to deal with 2 (or more) factors?
o More complications than one-way model?

o |
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Two-Way ANOVA

fAddi’[ive model (no interaction). T
# Means model:
Yijk = hij + €iji
where

» Effects model:

Replace
pij = p+ oy + B
above.

o |
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Two-Way ANOVA
s -

0
o Additive model:
Yijk = 1+ o + B + eiji

or

o |
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Two-Way ANOVA

fANOVA Table

Source d.f. SS MS F

Treatment A I—-1 SSA | MSA | MSA/MSE
Treatment B J—1 SSB | MSB | MSB/MSE
Residual n—I—J+1|SSE | MSE
Total n—1 SST

Skip the SS formula. Also, quite messy if unbalanced.

o |
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Two-Way ANOVA
E

ests:

® For factor A

® For factor B
Hy:01=---=0;
#® Alternatives: at least one level different.

Both are F-tests.

o |
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Example 3

- N

N <~ <¢(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

K <-«¢(,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,
55.8,69.5,55.0,02.0,48.8,45.5,44.2,52.0,51.5,
49.8,48.8,57.2,59.0,53.2,56.0)

ata.

> length(yield)
[1] 24
> table (N, K)
K
N

o

= O
o o O
oy O B

|
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Example 3

fANOVA table.

> anova (lm(yield factor (N)+factor (K)))

Analysis of Variance Table

Response: yield

Df Sum Sg Mean Sqg F wvalue Pr (>F)
factor(N) 1 189.28 189.282 6.7157 0.01703 =%
factor(K) 1 95.20 95.202 3.3778 0.08027
Residuals 21 591.88 28.185

Signif. codes: 0 xxx 0.001 %% 0.01 = 0.05 . 0.1 1

o |

Analvsis of Variance (ANOVA) — p. 41



Example 3
a

> pf(6.7157, 1, 21, lower.tail=F)
(1] 0.01703116

et p-values based on F, manually.

> pf(3.3778, 1, 21, lower.tail=F)
[1] 0.08027043

Know how to do this for other distributions

o
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Interaction

fRec:all

® Additive model:
Yiik = p+ a; + B + ek

or

o |
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Interaction

-

# What is an interaction?

o How to set up the ANOVA model and determine
interaction analytically?

o |
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Interaction

- N

etween factors (between 2 and B, for example).

Model:
Yijk = p+ o + 55 + vij + €iji

where

so the ;; is an interaction term.

o |
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Interaction

A

lternatively,

Yijk = 1+ a; + 55 + (aB)ij + eiji

Word model:
Y = A + B + AB

o |
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Interaction

fANOVA Table T
Source d.f. SS MS F
Treatment A I—-1 SSA | MSA | MSA/MSE
Treatment B J—1 SSB | MSB | MSB/MSE
Interaction | (I —1)(J—1) | SSAB | MSAB | MSAB/MSE
Residual n—1J SSE | MSE
Total n—1 SST
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Interaction

- N

ests:

® For factor A

® For factor B
Hy:01=---=0;

# For interaction
Hy : (Oz@)ij =0 for all 1, .

® Alternatives: at least one different.

All are F-tests.

o |
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Interaction

- N

nterpretation.

# Interaction - When the “effect” of one factor (2) on the
response is the same at different levels of another
factor (B), we say that there is no interaction; otherwise,
we say that there an interaction between A and B.

o Easier to understand by “interaction plot.”

o |
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Example

s N

N <~ <¢(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

K <-«¢(,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yvield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,
55.8,069.5,55.0,62.0,48.3,45.5,44.2,52.0,51.5,
49.8,48.8,57.2,59.0,53.2,56.0)

ame data as before; recall

’ ’

1 1
1 1

4

o |
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Example

-

fANOVA table.

> anova (lm(yield  factor (N)+factor (K)+factor (N) :factor (K)))

Analysis of Variance Table

Response: yield
Df Sum Sg Mean Sg F value Pr (>F)

factor (N) 1 189.28 189.282 6.7752 0.01702 =%
factor (K) 1 95.20 95.202 3.4077 0.07975
factor (N) : factor(K) 1 33.14 33.135 1.1860 0.28908
Residuals 20 558.75 27.937

Signif. codes: 0 xxx 0.001 %% 0.01 = 0.05 . 0.1 1

o |
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Example

s N

hortcut.

> anova (Im(yield factor (N) xfactor (K)))

Analysis of Variance Table

Response: yield
Df Sum Sg Mean Sg F value Pr (>F)

factor (N) 1 189.28 189.282 6.7752 0.01702 =%
factor (K) 1 95.20 95.202 3.4077 0.07975
factor (N) : factor(K) 1 33.14 33.135 1.1860 0.28908
Residuals 20 558.75 27.937

Signif. codes: 0 xxx 0.001 %% 0.01 = 0.05 . 0.1 1

o |
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Interaction Plot

- N

interaction.plot (N,K,yield)

mean of yield
56
|

o | |
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Interaction Plot

-

interaction.plot (K,N,yield)

56 58 60

ean of yield

54

52

- | K | B
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Interaction

-

fFor this example, since the interaction term is not
significant, our final model will not include the interaction
term.
Yield =N

or
Yield=N + K

Note: If the interaction is significant, then all main effects
need to be left in the model.

o |
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Higher-Way ANOVA

fANOVA for more than 2 factors
o Possible
# Much more complicated, especially with interactions.

Example 3 continued:
# Add another factor to previous Example

p <-¢(,1,60,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

Fit:
Yield =N + P + K + Interactions

o |
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Higher-Way ANOVA
E

> anova (lm(yield factor (N) xfactor (P)xfactor (K)))

hen

Analysis of Variance Table

Response: yield

Df Sum Sg Mean Sg F value Pr (>F)
factor (N) 1 189.28 189.282 6.1608 0.02454 «
factor (P) 1 8.40 8.402 0.2735 0.60819
factor (K) 1 95.20 95.202 3.0986 0.09746
factor (N) : factor (P) 1 21.28 21.282 0.6927 0.41750
factor (N) : factor (K) 1 33.14 33.135 1.0785 0.31448
factor (P) :factor (K) 1 0.48 0.482 0.0157 0.90192
factor (N) : factor (P) : factor (K) 1 37.00 37.002 1.2043 0.28870
Residuals 16 491.58 30.724

Signif. codes: 0 x*x% 0.001 %% 0.01 = 0.05 . 0.1 1

o |
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Higher-Way ANOVA
-

f.o Note that there are 2-way and 3-way interactions here.

# If 3-way interaction significant, then all terms need to be
left in the model, significant or not.

# Similarities to polynomial regression?

o |
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