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ANOVA

What is it?

Linear model (as in regression)

Continuous response.

Discrete independent variables.

How different from regression?

Presentation (ANOVA table).

Interpretation.
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One-Way ANOVA

Word model - similar to simple regression

Y = X

where Y is the (continuous) response and X is the
independent variable as before BUT is now discrete.

Formally. . .
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One-Way ANOVA

Two representations.

Means model:

Yij = µi + eij

where

i = 1, . . . , I, j = 1, . . . , ni

Effects model:

Yij = µ+ αi + eij

where

i = 1, . . . , I, j = 1, . . . , ni

so that

µi = µ+ αi

Analysis of Variance (ANOVA) – p. 4



One-Way ANOVA

Note n =
∑I

i=1
ni

Assume eij ∼ i.i.d. N(0, σ2).
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One-Way ANOVA

Hypotheses.

Means model:

H0 : µ1 = · · · = µI

versus HA : at least one µi different.

Effects model:

H0 : α1 = · · · = αI

versus HA : at least one αi different.

Perform F-test for either hypothesis.

Analysis of Variance (ANOVA) – p. 6



One-Way ANOVA

In either case, we have the ANOVA table (corrected):

Source d.f. SS MS F

Treatment I − 1 SSTreat MSTreat MSTreat/MSE

Residual n− I SSE MSE

Total n− 1 SST

SSTreat: Sum of squares for treatment.
SSE: Sum of squares for error (residual), same as RSS
SST: Sum of squares total.

And the MS is the mean squares (SS divided by d.f.).
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One-Way ANOVA

SSTreat =

I∑

i=1

ni(Y i· − Y ··)
2

SSE =

I∑

i=1

ni∑

j=1

(Yij − Y i·)
2

SST = Y
T
Y − nY

2
=

I∑

i=1

ni∑

j=1

(Yij − Y ··)
2

where

Y ·· = Y =

∑a
i=1

∑ni

j=1
Yij

n
and Y i· =

∑ni

j=1
Yij

ni
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One-Way ANOVA

The “Treatment” row is referred as “Between Group”
because it looks at variation between levels of a
treatment (groups)

The “Residual” row is referred as “Within Group”
because it looks at error (residual) variation; recall that

σ̂2 = MSResid = MSE
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One-Way ANOVA

Note that in regression, we had MSResid which is the
same as MSE.

In addition, we had SSReg instead of SSTreat in

regression.

It can be seen that

SSTreat + SSE = SST
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Estimation

Can compute µ̂i or µ̂ and α̂i.

However, there are different ways to compute them.

Set-to-zero, sum-to-zero, etc.

Estimation not important here.

Instead, the F-test more important.
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Example 1

First example

a <- c(1,1,1,1,2,2,3,3,3,3,3)

y <- c(3,4,5,5,3,2,9,12,5,8,5)

Fit a model

Yij = µ+ αi + eij

where

i = 1, 2, 3, j = 1, . . . , ni

n1 = 4, n2 = 2, n3 = 5

so that n = 11.
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Example 1

We may try aov() function, with the following

> aov(y˜a)

Call:

aov(formula = y ˜ a)

Terms:

a Residuals

Sum of Squares 30.39054 58.33673

Deg. of Freedom 1 9

Residual standard error: 2.54595

Estimated effects may be unbalanced

See anything(s) odd?
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Example 1

We will need a fix: with factor()

> aov(y˜factor(a))

Call:

aov(formula = y ˜ factor(a))

Terms:

factor(a) Residuals

Sum of Squares 50.67727 38.05000

Deg. of Freedom 2 8

Residual standard error: 2.180883

Estimated effects may be unbalanced

Much better.
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Example 1

Better yet,

> summary(aov(y˜factor(a)))

Df Sum Sq Mean Sq F value Pr(>F)

factor(a) 2 50.68 25.339 5.327 0.0338 *

Residuals 8 38.05 4.756

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

We now get a familiar ANOVA table.

Note that “Total” row is suppressed.
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Example 1

Can also do

> anova(lm(y˜factor(a)))

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

factor(a) 2 50.677 25.3386 5.3274 0.03382 *

Residuals 8 38.050 4.7562

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Example 1

Look at the box plot: boxplot(y˜factor(a))
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Example 2

Another example.

From R help file.

> ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)

> trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)

> group <- gl(2,10,20, labels=c("Ctl","Trt"))

> group

[1] Ctl Ctl Ctl Ctl Ctl Ctl Ctl Ctl Ctl Ctl Trt Trt Trt Trt Trt Trt Trt Trt

Levels: Ctl Trt

> weight <- c(ctl, trt)

> weight

[1] 4.17 5.58 5.18 6.11 4.50 4.61 5.17 4.53 5.33 5.14 4.81 4.17 4.41 3.59
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Example 2

Perform one-way ANOVA with 2 levels (use anova()

function).

> anova(lm.D9 <- lm(weight ˜ group))

Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)

group 1 0.6882 0.68820 1.4191 0.249

Residuals 18 8.7292 0.48496

Note again that “Total” row is suppressed.
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Example 2

What if you do summary()?

> summary(lm.D9)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.0320 0.2202 22.850 9.55e-15 ***

groupTrt -0.3710 0.3114 -1.191 0.249

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6964 on 18 degrees of freedom

Multiple R-squared: 0.07308,Adjusted R-squared: 0.02158

F-statistic: 1.419 on 1 and 18 DF, p-value: 0.249

Estimates value for Trt in group, but not for Ctl (why?).
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T-test

Notice that p-values for both F-test and t-test are the
same (0.249).

Are they related somehow?

Let’s find out. . .
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T-test

Can use original data: ctl,trt.

> t.test(ctl,trt,var.equal=T)

Two Sample t-test

data: ctl and trt

t = 1.1913, df = 18, p-value = 0.249

alternative hypothesis: true difference in means is

not equal to 0

95 percent confidence interval:

-0.2833003 1.0253003

sample estimates:

mean of x mean of y

5.032 4.661
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T-test

Since t = 1.1913 (previous page) and F = 1.491

And

> 1.1913ˆ2

[1] 1.419196

You see that F is a square of t (subject to round-off
error).
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Sum of Squares

For computing the sum of squares “by hand” (NOT done
here). Recall

SSTreat =

I∑

i=1

ni(Y i· − Y ··)
2, SSE =

I∑

i=1

ni∑

j=1

(Yij − Y i·)
2

SST = Y
′
Y − nY

2
=

I∑

i=1

ni∑

j=1

(Yij − Y ··)
2

where

Y ·· = Y =

∑a
i=1

∑ni

j=1
Yij

n
and Y i· =

∑ni

j=1
Yij

ni
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Sum of Squares

Possible to compute (using the current data)

Y ·· - This is simply mean(weight)

Y i· - Here, we have tapply(weight,group,mean)

ni - Similarly, this is
tapply(weight,group,length)

All others quantities are just straight forward applications
(although could be tedious).
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Estimates

Recall

> summary(lm.D9)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.0320 0.2202 22.850 9.55e-15 ***

groupTrt -0.3710 0.3114 -1.191 0.249

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6964 on 18 degrees of freedom

Multiple R-squared: 0.07308,Adjusted R-squared: 0.02158

F-statistic: 1.419 on 1 and 18 DF, p-value: 0.249
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Estimates

Match the estimate numbers of summary(lm.D9). To
start, set up a design matrix

> X<-cbind(rep(1,20),rep(c(1,0),each=10),

rep(c(0,1),each=10))

Any Problems?
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Estimates

To fix this, R imposes set-to-zero constraint with first
estimate set at 0 (i.e., α1 = 0).

To set this with the design matrix, do the following:

> X1<-cbind(rep(1,20),rep(c(0,1),each=10))
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Estimates

Then

> y<-weight

> beta.hat<-solve(t(X1)%*%X1)%*%t(X1)%*%y

> beta.hat

[,1]

[1,] 5.032

[2,] -0.371

As desired.
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Estimates

Alternatively, use the means model:

> summary(lm(weight ˜ group-1))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

groupCtl 5.0320 0.2202 22.85 9.55e-15 ***

groupTrt 4.6610 0.2202 21.16 3.62e-14 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6964 on 18 degrees of freedom

Multiple R-squared: 0.9818,Adjusted R-squared: 0.9798

F-statistic: 485.1 on 2 and 18 DF, p-value: < 2.2e-16
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Estimates

Check:

> X2<-cbind(rep(c(1,0),each=10),

rep(c(0,1),each=10))

> mu.hat<-solve(t(X2)%*%X2)%*%t(X2)%*%y

> mu.hat

[,1]

[1,] 5.032

[2,] 4.661

As expected.
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Box Plot

Let us look at the box plot: boxplot(weight ˜ group)
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Design Consideration

Because ANOVA F-test and t-test are related (in
one-way, 2-level case).

ANOVA needs to follow the t-test assumptions.

From eij ∼ i.i.d. N(0, σ2)

Data Yij must be normal, which follows from model.

Data must be independent within and between
groups, which is required in linear models.

Constant variance assumption must be satisfied as
well.
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Design Consideration

In particular, the assignment of treatments to groups
must be random.

In other words, we must have CRD (completely
randomized design) for correct analysis of one-way
ANOVA.

More design revelations in higher-way ANOVA. . .
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Two-Way ANOVA

How to deal with 2 (or more) factors?

More complications than one-way model?
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Two-Way ANOVA

Additive model (no interaction).

Means model:

Yijk = µij + eijk

where

i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , nij

Effects model:

Replace

µij = µ+ αi + βj

above.
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Two-Way ANOVA

So

Additive model:

Yijk = µ+ αi + βj + eijk

or

Y = A + B
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Two-Way ANOVA

ANOVA Table

Source d.f. SS MS F

Treatment A I − 1 SSA MSA MSA/MSE

Treatment B J − 1 SSB MSB MSB/MSE

Residual n− I − J + 1 SSE MSE

Total n− 1 SST

Skip the SS formula. Also, quite messy if unbalanced.
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Two-Way ANOVA

Tests:

For factor A

H0 : α1 = · · · = αI

For factor B

H0 : β1 = · · · = βJ

Alternatives: at least one level different.

Both are F-tests.
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Example 3

Data.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,

55.8,69.5,55.0,62.0,48.8,45.5,44.2,52.0,51.5,

49.8,48.8,57.2,59.0,53.2,56.0)

> length(yield)

[1] 24

> table(N,K)

K

N 0 1

0 6 6

1 6 6
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Example 3

ANOVA table.

> anova(lm(yield˜factor(N)+factor(K)))

Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

factor(N) 1 189.28 189.282 6.7157 0.01703 *

factor(K) 1 95.20 95.202 3.3778 0.08027 .

Residuals 21 591.88 28.185

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Example 3

Get p-values based on F, manually.

> pf(6.7157, 1, 21, lower.tail=F)

[1] 0.01703116

> pf(3.3778, 1, 21, lower.tail=F)

[1] 0.08027043

Know how to do this for other distributions
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Interaction

Recall

Additive model:

Yijk = µ+ αi + βj + eijk

or

Y = A + B
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Interaction

What is an interaction?

How to set up the ANOVA model and determine
interaction analytically?
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Interaction

Between factors (between A and B, for example).

Model:

Yijk = µ+ αi + βj + γij + eijk

where

i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , nij

so the γij is an interaction term.
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Interaction

Alternatively,

Yijk = µ+ αi + βj + (αβ)ij + eijk

Word model:

Y = A + B + AB
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Interaction

ANOVA Table

Source d.f. SS MS F

Treatment A I − 1 SSA MSA MSA/MSE

Treatment B J − 1 SSB MSB MSB/MSE

Interaction (I − 1)(J − 1) SSAB MSAB MSAB/MSE

Residual n− IJ SSE MSE

Total n− 1 SST
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Interaction

Tests:

For factor A

H0 : α1 = · · · = αI

For factor B

H0 : β1 = · · · = βJ

For interaction

H0 : (αβ)ij = 0 for all i, j.

Alternatives: at least one different.

All are F-tests.
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Interaction

Interpretation.

Interaction - When the “effect” of one factor (A) on the
response is the same at different levels of another
factor (B), we say that there is no interaction; otherwise,
we say that there an interaction between A and B.

Easier to understand by “interaction plot.”
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Example

Same data as before; recall

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,

55.8,69.5,55.0,62.0,48.8,45.5,44.2,52.0,51.5,

49.8,48.8,57.2,59.0,53.2,56.0)
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Example

ANOVA table.

> anova(lm(yield˜factor(N)+factor(K)+factor(N):factor(K)))

Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

factor(N) 1 189.28 189.282 6.7752 0.01702 *

factor(K) 1 95.20 95.202 3.4077 0.07975 .

factor(N):factor(K) 1 33.14 33.135 1.1860 0.28908

Residuals 20 558.75 27.937

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Example

Shortcut.

> anova(lm(yield˜factor(N)*factor(K)))

Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

factor(N) 1 189.28 189.282 6.7752 0.01702 *

factor(K) 1 95.20 95.202 3.4077 0.07975 .

factor(N):factor(K) 1 33.14 33.135 1.1860 0.28908

Residuals 20 558.75 27.937

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Interaction Plot

interaction.plot(N,K,yield)
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Interaction Plot

interaction.plot(K,N,yield)
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Interaction

For this example, since the interaction term is not
significant, our final model will not include the interaction
term.

Yield = N

or

Yield = N + K

Note: If the interaction is significant, then all main effects
need to be left in the model.
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Higher-Way ANOVA

ANOVA for more than 2 factors

Possible

Much more complicated, especially with interactions.

Example 3 continued:

Add another factor to previous Example

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

Fit:

Yield = N + P + K + Interactions
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Higher-Way ANOVA

Then

> anova(lm(yield˜factor(N)*factor(P)*factor(K)))

Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

factor(N) 1 189.28 189.282 6.1608 0.02454 *

factor(P) 1 8.40 8.402 0.2735 0.60819

factor(K) 1 95.20 95.202 3.0986 0.09746 .

factor(N):factor(P) 1 21.28 21.282 0.6927 0.41750

factor(N):factor(K) 1 33.14 33.135 1.0785 0.31448

factor(P):factor(K) 1 0.48 0.482 0.0157 0.90192

factor(N):factor(P):factor(K) 1 37.00 37.002 1.2043 0.28870

Residuals 16 491.58 30.724

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Higher-Way ANOVA

Note that there are 2-way and 3-way interactions here.

If 3-way interaction significant, then all terms need to be
left in the model, significant or not.

Similarities to polynomial regression?
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