Analysis of Variance (ANOVA)MATH 5910

ANOVA

What is it?

- Linear model (as in regression)
 - Continuous response.
 - Discrete independent variables.
- How different from regression?
 - Presentation (ANOVA table).
 - Interpretation.

Word model - similar to simple regression

$$Y = X$$

where Y is the (continuous) response and X is the independent variable as before BUT is now discrete.

Formally...

Two representations.

Means model:

$$Y_{ij} = \mu_i + e_{ij}$$

where

$$i = 1, \dots, I, \quad j = 1, \dots, n_i$$

Effects model:

$$Y_{ij} = \mu + \alpha_i + e_{ij}$$

where

$$i = 1, \dots, I, \quad j = 1, \dots, n_i$$

so that

$$\mu_i = \mu + \alpha_i$$

- Note $n = \sum_{i=1}^{I} n_i$
- Assume $e_{ij} \sim \text{i.i.d. } N(0, \sigma^2)$.

Hypotheses.

Means model:

$$H_0: \mu_1 = \cdots = \mu_I$$

versus H_A : at least one μ_i different.

Effects model:

$$H_0: \alpha_1 = \cdots = \alpha_I$$

versus H_A : at least one α_i different.

Perform F-test for either hypothesis.

In either case, we have the ANOVA table (corrected):

Source	d.f.	SS	MS	F
Treatment	I-1	SS_{Treat}	MS_{Treat}	MS_{Treat}/MSE
Residual	n-I	SSE	MSE	
Total	n-1	SST		

 SS_{Treat} : Sum of squares for treatment.

SSE: Sum of squares for error (residual), same as RSS

SST: Sum of squares total.

And the MS is the mean squares (SS divided by d.f.).

$$\begin{split} \mathsf{SS}_{Treat} &= \sum_{i=1}^{I} n_i (\overline{Y}_i. - \overline{Y}..)^2 \\ \\ \mathsf{SSE} &= \sum_{i=1}^{I} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i.})^2 \\ \\ \\ \mathsf{SST} &= \mathbf{Y}^T \mathbf{Y} - n \overline{Y}^2 = \sum_{i=1}^{I} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}..)^2 \end{split}$$

where

$$\overline{Y}_{\cdot \cdot} = \overline{Y} = rac{\sum_{i=1}^{a} \sum_{j=1}^{n_i} Y_{ij}}{n}$$
 and $\overline{Y}_{i \cdot} = rac{\sum_{j=1}^{n_i} Y_{ij}}{n_i}$

i = 1 i = 1

- The "Treatment" row is referred as "Between Group" because it looks at variation between levels of a treatment (groups)
- ▶ The "Residual" row is referred as "Within Group" because it looks at error (residual) variation; recall that $\hat{\sigma}^2 = \mathsf{MS}_{Resid} = \mathsf{MSE}$

- Note that in regression, we had MS_{Resid} which is the same as MSE.
- In addition, we had SS_{Reg} instead of SS_{Treat} in regression.
- It can be seen that

$$SS_{Treat} + SSE = SST$$

Estimation

- Can compute $\hat{\mu}_i$ or $\hat{\mu}$ and $\hat{\alpha}_i$.
- However, there are different ways to compute them.
 - Set-to-zero, sum-to-zero, etc.
- Estimation not important here.
- Instead, the F-test more important.

First example

a
$$\leftarrow$$
 c(1,1,1,1,2,2,3,3,3,3,3)
y \leftarrow c(3,4,5,5,3,2,9,12,5,8,5)

Fit a model

$$Y_{ij} = \mu + \alpha_i + e_{ij}$$

where

$$i = 1, 2, 3, \quad j = 1, \dots, n_i$$

$$n_1 = 4, \ n_2 = 2, \ n_3 = 5$$

so that n = 11.

We may try aov () function, with the following

```
> aov(y^a)
Call:
   aov(formula = y ~ a)
Terms:
                       a Residuals
Sum of Squares 30.39054 58.33673
Deg. of Freedom
Residual standard error: 2.54595
Estimated effects may be unbalanced
```

See anything(s) odd?

```
We will need a fix: with factor()
```

```
> aov(y~factor(a))
Call:
   aov(formula = y ~ factor(a))
Terms:
                factor(a) Residuals
Sum of Squares 50.67727 38.05000
Deg. of Freedom
Residual standard error: 2.180883
Estimated effects may be unbalanced
```

Much better.

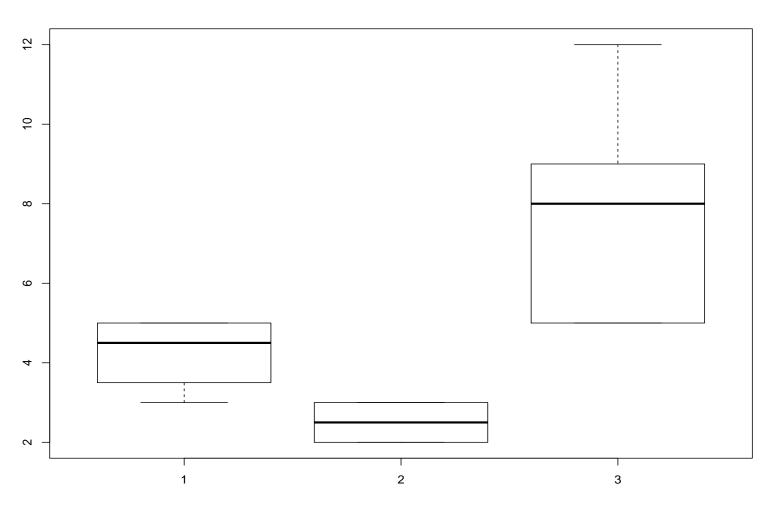
Better yet,

We now get a familiar ANOVA table.

Note that "Total" row is suppressed.

Can also do

Look at the box plot: boxplot (y factor(a))



Another example.

From R help file.

```
> ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
> trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)

> group <- gl(2,10,20, labels=c("Ctl","Trt"))
> group
 [1] Ctl Ctl Ctl Ctl Ctl Ctl Ctl Ctl Ctl Trt Trt Trt Trt Trt Trt Trt Levels: Ctl Trt

> weight <- c(ctl, trt)
> weight
 [1] 4.17 5.58 5.18 6.11 4.50 4.61 5.17 4.53 5.33 5.14 4.81 4.17 4.41 3.5
```

Perform one-way ANOVA with 2 levels (use anova () function).

Note again that "Total" row is suppressed.

```
What if you do summary ()?
> summary(lm.D9)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.0320 0.2202 22.850 9.55e-15 ***
groupTrt -0.3710 0.3114 -1.191 0.249
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.6964 on 18 degrees of freedom
Multiple R-squared: 0.07308, Adjusted R-squared: 0.02158
```

Estimates value for Trt in group, but not for Ctl (why?).

F-statistic: 1.419 on 1 and 18 DF, p-value: 0.249

T-test

- Notice that p-values for both F-test and t-test are the same (0.249).
- Are they related somehow?
- Let's find out...

T-test

```
Can use original data: ctl, trt.
> t.test(ctl,trt,var.equal=T)
Two Sample t-test
data: ctl and trt
t = 1.1913, df = 18, p-value = 0.249
alternative hypothesis: true difference in means is
not equal to 0
95 percent confidence interval:
 -0.2833003 1.0253003
sample estimates:
mean of x mean of y
    5.032 4.661
```

T-test

- Since t = 1.1913 (previous page) and F = 1.491
- And

```
> 1.1913<sup>2</sup>
[1] 1.419196
```

You see that F is a square of t (subject to round-off error).

Sum of Squares

For computing the sum of squares "by hand" (NOT done here). Recall

$$SS_{Treat} = \sum_{i=1}^{I} n_i (\overline{Y}_{i.} - \overline{Y}_{..})^2, SSE = \sum_{i=1}^{I} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i.})^2$$

SST =
$$\mathbf{Y'Y} - n\overline{Y}^2 = \sum_{i=1}^{I} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{..})^2$$

where

$$\overline{Y}_{\cdot \cdot \cdot} = \overline{Y} = rac{\sum_{i=1}^a \sum_{j=1}^{n_i} Y_{ij}}{n}$$
 and $\overline{Y}_{i \cdot \cdot} = rac{\sum_{j=1}^{n_i} Y_{ij}}{n_i}$

Sum of Squares

Possible to compute (using the current data)

- ullet \overline{Y} .. This is simply mean (weight)
- $\overline{Y}_{i\cdot}$ Here, we have tapply (weight, group, mean)
- n_i Similarly, this is tapply (weight, group, length)

All others quantities are just straight forward applications (although could be tedious).

Recall

Residual standard error: 0.6964 on 18 degrees of freedom

Multiple R-squared: 0.07308, Adjusted R-squared: 0.02158

F-statistic: 1.419 on 1 and 18 DF, p-value: 0.249

Match the estimate numbers of summary (lm.D9). To start, set up a design matrix

Any Problems?

To fix this, R imposes set-to-zero constraint with first estimate set at 0 (i.e., $\alpha_1 = 0$).

To set this with the design matrix, do the following:

> X1 < -cbind(rep(1,20), rep(c(0,1), each=10))

Then

As desired.

Alternatively, use the means model:

```
> summary(lm(weight ~ group-1))
Coefficients:
        Estimate Std. Error t value Pr(>|t|)
groupCtl 5.0320 0.2202 22.85 9.55e-15 ***
groupTrt 4.6610 0.2202 21.16 3.62e-14 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.6964 on 18 degrees of freedom
Multiple R-squared: 0.9818, Adjusted R-squared: 0.9798
```

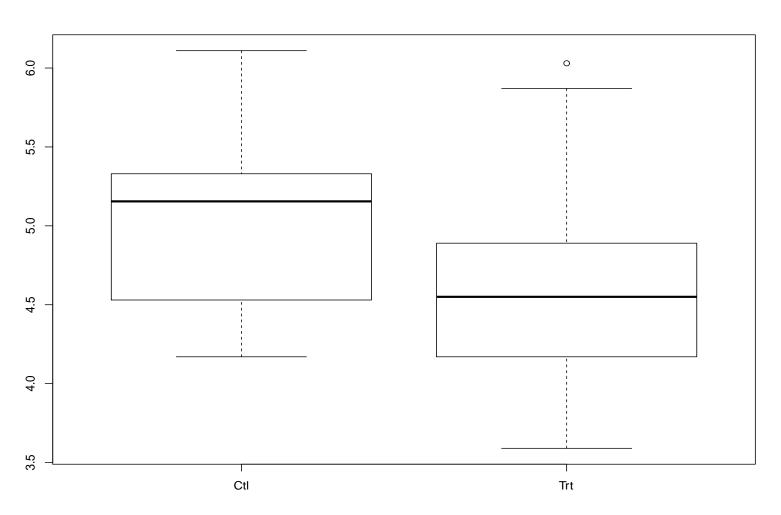
F-statistic: 485.1 on 2 and 18 DF, p-value: < 2.2e-16

Check:

As expected.

Box Plot

Let us look at the box plot: boxplot (weight ~ group)



Design Consideration

- Because ANOVA F-test and t-test are related (in one-way, 2-level case).
- ANOVA needs to follow the t-test assumptions.
- From $e_{ij} \sim \text{i.i.d. } N(0, \sigma^2)$
 - Data Y_{ij} must be normal, which follows from model.
 - Data must be independent within and between groups, which is required in linear models.
 - Constant variance assumption must be satisfied as well.

Design Consideration

- In particular, the assignment of treatments to groups must be random.
- In other words, we must have CRD (completely randomized design) for correct analysis of one-way ANOVA.
- More design revelations in higher-way ANOVA...

Two-Way ANOVA

- How to deal with 2 (or more) factors?
- More complications than one-way model?

Two-Way ANOVA

Additive model (no interaction).

Means model:

$$Y_{ijk} = \mu_{ij} + e_{ijk}$$

where

$$i = 1, \dots, I, \quad j = 1, \dots, J, \quad k = 1, \dots, n_{ij}$$

Effects model:

Replace

$$\mu_{ij} = \mu + \alpha_i + \beta_j$$

above.

Two-Way ANOVA

So

Additive model:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + e_{ijk}$$

or

$$Y = A + B$$

Two-Way ANOVA

ANOVA Table

Source	d.f.	SS	MS	F
Treatment A	I-1	SSA	MSA	MSA/MSE
Treatment B	J-1	SSB	MSB	MSB/MSE
Residual	n-I-J+1	SSE	MSE	
Total	n-1	SST		

Skip the SS formula. Also, quite messy if unbalanced.

Two-Way ANOVA

Tests:

For factor A

$$H_0: \alpha_1 = \cdots = \alpha_I$$

For factor B

$$H_0: \beta_1 = \cdots = \beta_J$$

Alternatives: at least one level different.

Both are F-tests.

Data.

```
K \leftarrow c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,1,0,1,0)
yield \leftarrow c(49.5, 62.8, 46.8, 57.0, 59.8, 58.5, 55.5, 56.0, 62.8,
          55.8,69.5,55.0,62.0,48.8,45.5,44.2,52.0,51.5,
          49.8, 48.8, 57.2, 59.0, 53.2, 56.0)
> length(yield)
[1] 24
> table(N,K)
  K
 0 6 6
```

ANOVA table.

Get p-values based on F, manually.

```
> pf(6.7157, 1, 21, lower.tail=F)
[1] 0.01703116
> pf(3.3778, 1, 21, lower.tail=F)
[1] 0.08027043
```

Know how to do this for other distributions

Recall

Additive model:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + e_{ijk}$$

or

$$Y = A + B$$

- What is an interaction?
- How to set up the ANOVA model and determine interaction analytically?

Between factors (between A and B, for example).

Model:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk}$$

where

$$i = 1, \dots, I, \quad j = 1, \dots, J, \quad k = 1, \dots, n_{ij}$$

so the γ_{ij} is an interaction term.

Alternatively,

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + e_{ijk}$$

Word model:

$$Y = A + B + AB$$

ANOVA Table

Source	d.f.	SS	MS	F
Treatment A	I-1	SSA	MSA	MSA/MSE
Treatment B	J-1	SSB	MSB	MSB/MSE
Interaction	(I-1)(J-1)	SSAB	MSAB	MSAB/MSE
Residual	n-IJ	SSE	MSE	
Total	n-1	SST		

Tests:

For factor A

$$H_0: \alpha_1 = \cdots = \alpha_I$$

For factor B

$$H_0: \beta_1 = \cdots = \beta_J$$

For interaction

$$H_0: (\alpha\beta)_{ij} = 0$$
 for all i, j .

Alternatives: at least one different.

All are F-tests.

Interpretation.

- **Interaction** When the "effect" of one factor (A) on the response is the same at different levels of another factor (B), we say that there is no interaction; otherwise, we say that there an interaction between A and B.
- Easier to understand by "interaction plot."

Same data as before; recall

ANOVA table.

```
> anova(lm(yield~factor(N)+factor(K)+factor(N):factor(K)))
Analysis of Variance Table
```

Response: yield

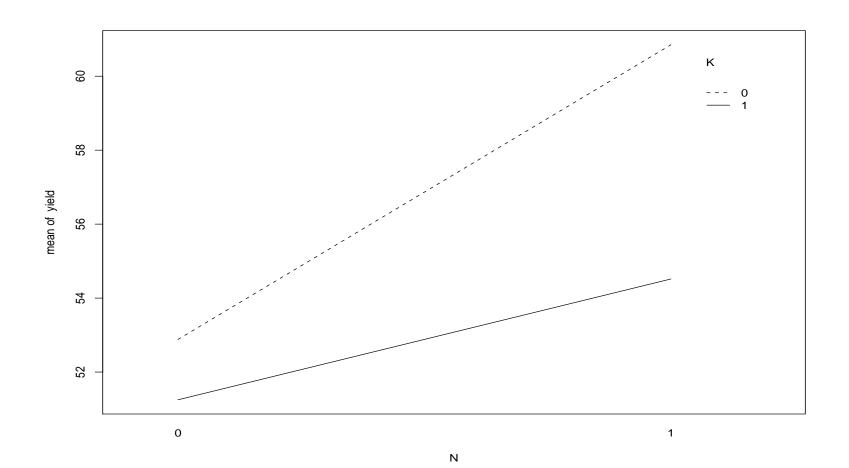
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Shortcut.

```
> anova(lm(yield~factor(N)*factor(K)))
Analysis of Variance Table
Response: yield
                   Df Sum Sq Mean Sq F value Pr(>F)
factor(N)
                    1 189.28 189.282 6.7752 0.01702 *
                    1 95.20 95.202 3.4077 0.07975 .
factor(K)
factor(N): factor(K) 1 33.14 33.135 1.1860 0.28908
                   20 558.75 27.937
Residuals
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

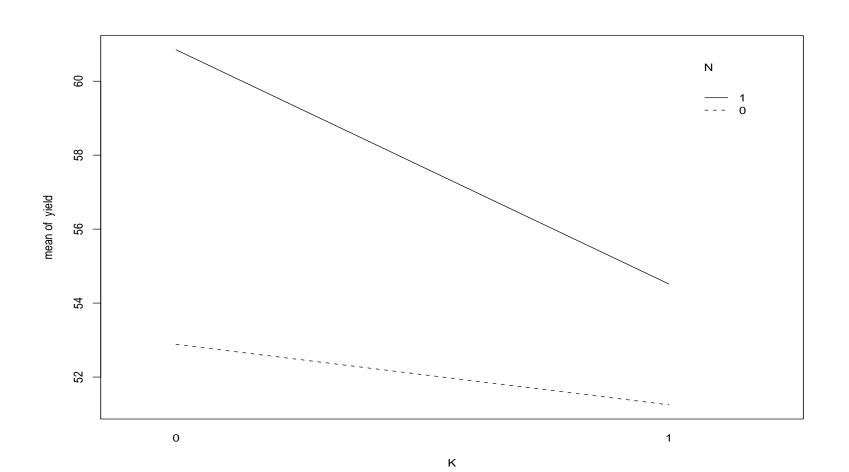
Interaction Plot

interaction.plot(N,K,yield)



Interaction Plot

interaction.plot(K, N, yield)



For this example, since the interaction term is not significant, our final model will not include the interaction term.

$$Yield = N$$

or

$$Yield = N + K$$

Note: If the interaction is significant, then all main effects need to be left in the model.

Higher-Way ANOVA

ANOVA for more than 2 factors

- Possible
- Much more complicated, especially with interactions.

Example 3 continued:

Add another factor to previous Example

$$P \leftarrow c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)$$

Fit:

Yield =
$$N + P + K + Interactions$$

Higher-Way ANOVA

Then

```
> anova(lm(yield~factor(N)*factor(P)*factor(K)))
Analysis of Variance Table
Response: yield
                             Df Sum Sq Mean Sq F value Pr(>F)
factor(N)
                              1 189.28 189.282 6.1608 0.02454 *
factor(P)
                                8.40 8.402 0.2735 0.60819
factor(K)
                                95.20 95.202 3.0986 0.09746 .
                              1 21.28 21.282 0.6927 0.41750
factor(N):factor(P)
factor(N):factor(K)
                              1 33.14 33.135 1.0785 0.31448
factor(P):factor(K)
                              1
                                0.48 0.482 0.0157 0.90192
                              1 37.00
                                        37.002 1.2043 0.28870
factor(N):factor(P):factor(K)
Residuals
                             16 491.58
                                        30.724
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
```

Higher-Way ANOVA

- Note that there are 2-way and 3-way interactions here.
- If 3-way interaction significant, then all terms need to be left in the model, significant or not.
- Similarities to polynomial regression?