Analysis of Variance (ANOVA)MATH 5910

ANOVA

What is it?

- **C** Linear model (as in regression)
	- **Continuous response.**
	- Discrete independent variables.
- **How different from regression?**
	- Presentation (ANOVA table).
	- Interpretation. \bullet

Word model - similar to simple regression

 $Y = Y$

where Y is the (continuous) response and X is the independent variable as before BUT is now discrete.

Formally. . .

Two representations.

• Means model:

$$
Y_{ij} = \mu_i + e_{ij}
$$

where

$$
i=1,\ldots,I, \ \ j=1,\ldots,n_i
$$

C Effects model:

$$
Y_{ij} = \mu + \alpha_i + e_{ij}
$$

where

$$
i=1,\ldots,I, \ \ j=1,\ldots,n_i
$$

so that

$$
\mu_i=\mu+\alpha_i
$$

• Note
$$
n = \sum_{i=1}^{I} n_i
$$

Assume e_{ij} \sim \sim i.i.d. $N(0,\sigma^2)$ $^{2}).$

Hypotheses.

• Means model:

 $H_0: \mu_1 = \cdots = \mu_I$

versus H_A : at least one μ_i different.

Confluence Effects model:

$$
H_0: \alpha_1 = \cdots = \alpha_I
$$

versus H_A : at least one α_i different.

Perform F-test for either hypothesis.

In either case, we have the ANOVA table (corrected):

 SS_{Treat} : Sum of squares for treatment.

SSE: Sum of squares for error (residual), same as RSSSST: Sum of squares total.

And the MS is the mean squares (SS divided by d.f.).

$$
SS_{Treat} = \sum_{i=1}^{I} n_i (\overline{Y}_{i.} - \overline{Y}_{..})^2
$$

\n
$$
SSE = \sum_{i=1}^{I} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i.})^2
$$

\n
$$
SST = \mathbf{Y}^T \mathbf{Y} - n\overline{Y}^2 = \sum_{i=1}^{I} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{..})^2
$$

where

$$
\overline{Y}_{\cdot \cdot} = \overline{Y} = \frac{\sum_{i=1}^{a} \sum_{j=1}^{n_i} Y_{ij}}{n} \quad \text{and} \quad \overline{Y}_{i \cdot} = \frac{\sum_{j=1}^{n_i} Y_{ij}}{n_i}
$$

Analysis of Variance (ANOVA) – p. 8

- The "Treatment" row is referred as "Between Group"because it looks at variation between levels of ^atreatment (groups)
- The "Residual" row is referred as "Within Group" because it looks at error (residual) variation; recall that $\hat{\sigma}^2$ $=$ $= {\sf MS}_{Resid}$ = $=$ MSE

- Note that in regression, we had MS_{Resid} which is the same as MSE.
- In addition, we had SS_{Reg} instead of SS_{Treat} in regression.
- \bullet It can be seen that

$$
\text{SS}_{Treat} + \text{SSE} = \text{SST}
$$

Estimation

- Can compute $\hat{\mu}_i$ or $\hat{\mu}$ and $\hat{\alpha}_i$.
- **However, there are different ways to compute them.**
	- Set-to-zero, sum-to-zero, etc.
- **Estimation not important here.**
- Instead, the F-test more important.

First example

$$
a < -c(1,1,1,1,2,2,3,3,3,3,3)
$$

$$
y < -c(3,4,5,5,3,2,9,12,5,8,5)
$$

Fit ^a model

$$
Y_{ij} = \mu + \alpha_i + e_{ij}
$$

where

$$
i = 1, 2, 3, \quad j = 1, \dots, n_i
$$

$$
n_1 = 4, n_2 = 2, n_3 = 5
$$

so that $n = 11$.

We may try \texttt{aov} () function, with the following

```
> aov(y˜a)
Call:aov(formula = y \tilde{a})
```
Terms:

^a Residuals Sum of Squares 30.39054 58.33673 Deg. of Freedom 1 9

Residual standard error: 2.54595 Estimated effects may be unbalanced

```
See anything(s) odd?
```
We will need a fix: with \texttt{factor} ()

```
> aov(y˜factor(a))
Call:aov(formula = y \tilde{ } factor(a))
```
Terms:

factor(a) Residuals Sum of Squares 50.67727 38.05000 Deg. of Freedom 2 8

Residual standard error: 2.180883 Estimated effects may be unbalanced

Much better.

Better yet,

We now get ^a familiar ANOVA table.

Note that "Total" row is suppressed.

Can also do

> anova(lm(y˜factor(a)))

Analysis of Variance Table

```
Response: y
          Df Sum Sq Mean Sq F value Pr(>F)
factor(a) 2 50.677 25.3386 5.3274 0.03382 \starResiduals 8 38.050 4.7562 ---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```
Look at the box plot: $boxplot(y^*factor(a))$

Another example.

• From R help file.

 $>$ ctl \le \sim c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14) > trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69) > group <- ^gl(2,10,20, labels=c("Ctl","Trt"))

> group

[1] Ctl Trt Trt Trt Trt Trt Trt Trt Trt Levels: Ctl Trt

```
> weight <- c(ctl, trt)
> weight
[1] 4.17 5.58 5.18 6.11 4.50 4.61 5.17 4.53 5.33 5.14 4.81 4.17 4.41 3.59
```
Perform one-way ANOVA with 2 levels (use anova () function).

```
> anova(lm.D9 <- lm(weight ˜ group))
Analysis of Variance Table
```
Response: weight Df Sum Sq Mean Sq ^F value Pr(>F) group ¹ 0.6882 0.68820 1.4191 0.249 Residuals ¹⁸ 8.7292 0.48496

Note again that "Total" row is suppressed.

What if you do $\texttt{summaxy}$ () ?

```
> summary(lm.D9)
```
Coefficients:

Estimate Std. Error ^t value Pr(>|t|) (Intercept) 5.0320 0.2202 22.850 9.55e-15 ***groupTrt -0.3710 0.3114 -1.191 0.249 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6964 on ¹⁸ degrees of freedom Multiple R-squared: 0.07308,Adjusted R-squared: 0.02158 F-statistic: 1.419 on ¹ and ¹⁸ DF, p-value: 0.249

Estimates value for \texttt{Trt} in group, but not for \texttt{ctl} (why?).

T-test

- Notice that p-values for both F-test and t-test are the \bullet same (0.249).
- Are they related somehow?
- **Let's find out...**

T-test

```
Can use original data: ctl, trt.
> t.test(ctl,trt,var.equal=T)
Two Sample t-test
data: ctl and trt
t = 1.1913, df = 18, p-value = 0.249
alternative hypothesis: true difference in means is
not equal to 0
95 percent confidence interval:
 -0.2833003 1.0253003
sample estimates:
mean of x mean of y
    5.032 4.661
```
T-test

- Since $t=1.1913$ (previous page) and $F=1.491\,$
- **S** And
	- > 1.1913ˆ2 [1] 1.419196
- You see that F is ^a square of ^t (subject to round-off error).

Sum of Squares

For computing the sum of squares "by hand" (NOT donehere). Recall

$$
\begin{aligned}\n\mathbf{S} \mathbf{S}_{Treat} &= \sum_{i=1}^{I} n_i (\overline{Y}_{i \cdot} - \overline{Y}_{\cdot \cdot})^2, \quad \mathbf{S} \mathbf{S} \mathbf{E} = \sum_{i=1}^{I} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i \cdot})^2 \\
\mathbf{S} \mathbf{S} \mathbf{T} &= \mathbf{Y}' \mathbf{Y} - n \overline{Y}^2 = \sum_{i=1}^{I} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{\cdot \cdot})^2\n\end{aligned}
$$

where

$$
\overline{Y}_{\cdot \cdot} = \overline{Y} = \frac{\sum_{i=1}^{a} \sum_{j=1}^{n_i} Y_{ij}}{n} \quad \text{and} \quad \overline{Y}_{i \cdot} = \frac{\sum_{j=1}^{n_i} Y_{ij}}{n_i}
$$

Sum of Squares

Possible to compute (using the current data)

- $Y_{\cdot \cdot}$ This is simply mean (weight)
- ${Y}_{i\cdot}$ $\operatorname{\mathsf{Here}},$ we have $\operatorname{\mathsf{tapply}}$ (weight,group,mean)
- n_i Similarly, this is tapply(weight,group,length)

All others quantities are just straight forward applications(although could be tedious).

Recall

> summary(lm.D9)

Coefficients:Estimate Std. Error ^t value Pr(>|t|) (Intercept) 5.0320 0.2202 22.850 9.55e-15 ***groupTrt -0.3710 0.3114 -1.191 0.249 ---Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6964 on ¹⁸ degrees of freedom Multiple R-squared: 0.07308,Adjusted R-squared: 0.02158 F-statistic: 1.419 on ¹ and ¹⁸ DF, p-value: 0.249

Match the estimate numbers of summary (lm.D9) . To start, set up ^a design matrix

```
> X<-cbind(rep(1,20),rep(c(1,0),each=10),
           rep(c(0,1), each=10)
```
Any Problems?

To fix this, R imposes set-to-zero constraint with first estimate set at 0 (i.e., $\alpha_1=0$).

To set this with the design matrix, do the following:

 $>$ X1<-cbind(rep(1,20),rep(c(0,1),each=10))

Then

- > ^y<-weight
- > beta.hat<-solve(t(X1)%*%X1)%*%t(X1)%*%y
- > beta.hat
- [,1] [1,] 5.032 $[2,] -0.371$

As desired.

Alternatively, use the means model:

> summary(lm(weight ˜ group-1))

Coefficients:

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6964 on ¹⁸ degrees of freedom Multiple R-squared: 0.9818,Adjusted R-squared: 0.9798 F-statistic: 485.1 on 2 and 18 DF, p-value: < $2.2e-16$

Check:

```
> X2<-cbind(rep(c(1,0),each=10),
            rep(c(0,1), each=10)
> mu.hat<-solve(t(X2)%*%X2)%*%t(X2)%*%y
> mu.hat
      [,1]
[1,] 5.032
[2,] 4.661
```
As expected.

Box Plot

Let us look at the box plot: boxplot (weight \degree group)

Design Consideration

- Because ANOVA F-test and t-test are related (inone-way, 2-level case).
- ANOVA needs to follow the t-test assumptions.
- From e_{ij} \sim \sim i.i.d. $N(0,\sigma^2)$ $^{2})$
	- Data Y_{ij} must be normal, which follows from model.
	- Data must be independent within and betweengroups, which is required in linear models.
	- Constant variance assumption must be satisfied aswell.

Design Consideration

- In particular, the assignment of treatments to groupsmust be random.
- In other words, we must have CRD (completely randomized design) for correct analysis of one-wayANOVA.
- More design revelations in higher-way ANOVA...

- How to deal with 2 (or more) factors?
- More complications than one-way model? \bullet

Additive model (no interaction).

Means model:

$$
Y_{ijk} = \mu_{ij} + e_{ijk}
$$

where

$$
i = 1, ..., I, j = 1, ..., J, k = 1, ..., n_{ij}
$$

• Effects model:

Replace

$$
\mu_{ij} = \mu + \alpha_i + \beta_j
$$

above.

So

Additive model:

$$
Y_{ijk} = \mu + \alpha_i + \beta_j + e_{ijk}
$$

or

 $Y = A + B$

ANOVA Table

Skip the SS formula. Also, quite messy if unbalanced.

Tests:

• For factor A

$$
H_0: \alpha_1 = \cdots = \alpha_I
$$

• For factor B

$$
H_0: \beta_1 = \cdots = \beta_J
$$

Alternatives: at least one level different.

Both are F-tests.

Data.

^N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0) $K \leftarrow c(1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0)$ yield \leftarrow c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8, 55.8,69.5,55.0,62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

> length(yield)

[1] ²⁴

- > table(N,K)
	- K

^N ⁰ ¹

⁰ ⁶ ⁶

¹ ⁶ ⁶

ANOVA table.

> anova(lm(yield˜factor(N)+factor(K))) Analysis of Variance Table

Response: ^yield Df Sum Sq Mean Sq ^F value Pr(>F) factor(N) 1 189.28 189.282 6.7157 0.01703 \star factor(K) ¹ 95.20 95.202 3.3778 0.08027 . Residuals ²¹ 591.88 28.185 ---Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Get p-values based on F, manually.

> ^pf(6.7157, 1, 21, lower.tail=F) [1] 0.01703116

> ^pf(3.3778, 1, 21, lower.tail=F) [1] 0.08027043

Know how to do this for <mark>other distributions</mark>

Recall

Additive model:

$$
Y_{ijk} = \mu + \alpha_i + \beta_j + e_{ijk}
$$

or

$$
Y = A + B
$$

- What is an interaction?
- **How to set up the ANOVA model and determine** interaction analytically?

Between factors (between $\mathbb A$ and $\mathbb B,$ for example).

Model:

$$
Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk}
$$

where

$$
i = 1, ..., I, j = 1, ..., J, k = 1, ..., n_{ij}
$$

so the γ_{ij} is an interaction term.

Alternatively,

$$
Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + e_{ijk}
$$

Word model:

 $Y = A + B + AB$

ANOVA Table

Tests:

• For factor A

 $H_0: \alpha_1 = \cdots = \alpha_I$

• For factor B

$$
H_0: \beta_1 = \cdots = \beta_J
$$

• For interaction

$$
H_0: (\alpha\beta)_{ij} = 0 \text{ for all } i, j.
$$

Alternatives: at least one different.

All are F-tests.

Interpretation.

- **Interaction** When the "effect" of one factor (A) on the response is the same at different levels of anotherfactor (B) , we say that there is no interaction; otherwise, we say that there an interaction between $\mathtt A$ and $\mathtt B$.
- Easier to understand by "interaction plot."

Same data as before; recall

^N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0) $K \leftarrow c(1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0)$ yield \leftarrow c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8, 55.8,69.5,55.0,62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

ANOVA table.

> anova(lm(yield˜factor(N)+factor(K)+factor(N):factor(K))) Analysis of Variance Table

Response: ^yield

Df Sum Sq Mean Sq ^F value Pr(>F) factor(N) 1 189.28 189.282 6.7752 0.01702 * factor(K) 1 95.20 95.202 3.4077 0.07975. factor(N):factor(K) ¹ 33.14 33.135 1.1860 0.28908 Residuals ²⁰ 558.75 27.937 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Shortcut.

> anova(lm(yield˜factor(N)*factor(K))) Analysis of Variance Table

```
Response: yield
```
Df Sum Sq Mean Sq ^F value Pr(>F) factor(N) 1 189.28 189.282 6.7752 0.01702 * factor(K) 1 95.20 95.202 3.4077 0.07975. factor(N):factor(K) ¹ 33.14 33.135 1.1860 0.28908 Residuals ²⁰ 558.75 27.937 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Interaction Plot

interaction.plot(N,K,yield)

Interaction Plot

interaction.plot(K,N,yield)

For this example, since the interaction term is not significant, our final model will not include the interaction term.

$$
Yield = N
$$

or

$Yield = N + K$

Note: If the interaction is significant, then all main effectsneed to be left in the model.

Higher-Way ANOVA

ANOVA for more than ² factors

• Possible

Much more complicated, especially with interactions.

Example 3 continued:

• Add another factor to previous Example

 $P \leftarrow c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)$

Fit:

$Yield = N + P + K + Interactions$

Higher-Way ANOVA

Then

> anova(lm(yield˜factor(N) *factor(P)*factor(K)))Analysis of Variance Table

Response: ^yield

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Higher-Way ANOVA

- Note that there are 2-way <mark>and</mark> 3-way interactions here.
- **If 3-way interaction significant, then all terms need to be** left in the model, significant or not.
- **•** Similarities to polynomial regression?