MATH 5910
Logistic Regression and GLM



Logistic Regression

» Consider a regression model with binary response.
P Logistic regression: one possible model.

» Popular.

» Other methods possible.

» Independent variables: can be continuous or discrete (or
both).

» Close connection to contingency tables.



Logistic Regression

Concentrate on binary response
Y=0or1l

Suppose we have one independent variable X (either discrete or
continuous).

How to model?

Note: May have more than one independent variables, in general.



Model

Assume that the data Yy,..., Y, are iid.

Let
pi = P(Y; =1]X;),

the probability of “success.”

Note
E(Yi|Xi)) = P(Yi = 1|Xi) = pi



Model

Then

is the logistic model.

We have the logit transform

|ogit(p;)=|og< P >

1—pi

hence the name logistic regression.



Model

Can be seen that

Pi  _ ePoth1Xi
1-pi
or
ebotPLX;
pi = P(Yi =1|X)) 11 ehotBiX
1

Note the missing error term (why?).



Estmation

Now, both By and 31 can be estimated based on data (details
postponed; can be done in R), so that

N 1
Pi= 1+ e—(Bo+B1X;)
where BAO and BAl are estimates of By and 31, respectively.

Or R

Pi
1-pi

logit(p;) = log < > = Bo + F1X;



Testing

» Individual terms:

Ho:8=0 vs. Hy:3#0

» Overall fit: Goodness-of-fit, comparing proposed model
against the null model - use x? test.



Example 1

» Data table:
Y
1 0
X 1|17 31|10
14 82| 96
21 85| 106

» Y: 0 = Survive, 1 = Death
» X: 0= No Shock, 1= Shock
Original data: X and Y binary (0 or 1).



Example 1

Analysis - no R for this example.
> We have that By = —1.768 and 31 = 2.615.

» Then
logit(p) = —1.768 + 2.615X

» Or )

p= 1+ e (~1.768+2615X)




Example 1

» For X =0,
X . 1
p(O)— P(Y— 1|X—0) = m —0-146
» For X =1,
1

0.7

p1)=P(Y =1X=1)= 1+ e (—1.768+2615) _



Example 1

Interpretations

» P(Y =1|X = 0) = 0.146: Given that no shock was present
(X =0), the estimated probability that a patient dies
(Y =1) is 0.146.

» P(Y =1|X =1) = 0.7: Given that shock was present
(X = 1), the estimated probability that a patient dies
(Y =1)is 0.7.

Is it that complicated?

Table.



Example 1

Another interpretation:

1 = 2.615 is the (estimated) log odds ratio.

How?



Example 1

Recall:
» Can transform probability into odds: odds = p/(1 — p)
» For convenience, let p(x) = P(Y =1|X = x), and

odds(x) = 1 _P(:()X)

so we can have odds(0) and odds(1)
» OR is the odds ratio, i.e.

oR = 2dds(1) _ p(1)/(1 — p(1))

~ odds(0)  p(0)/(1 - p(0))




Example 1

Then the log odds ratio is

p
logOR = log <
g p




Example 1

But since we are dealing with estimates,

log OR

logit(p(1)) — logit(5(0))
Bo+P1-1—Po—p1-0
i

2.615



Example 1

To verify (with our set up)

~ 7-82
R=_—— =13.667
0 3-14 3:6
and that e
log OR = 2.615

as was to be seen.



Example 1

Also,

1
1 + e—(—1.768+2.615x)

px)=P(Y =1|X =x) =

for this particular example, or

1

(x)=P(Y =1 X =x) = ————
Pi) = P(Y = 11X =) = - =5

in general. Hence, each change in x will affect p(x) in the above
(nonlinear) fashion.

Compare this against the linear regression model.



Example 2

This time, we will use R.
» Data: Coronary heart disease (CHD, response Y) and Age (X).
» Y is either yes (Y=1) or no (Y=0).
> Goal: investigate the effect of Age on CHD.



Example 2

Read in and inspect data.

> ex2data<-read.table(’ex2data.txt’,header=T)

> ex2data
Age CHD
1 20 0
2 23 0
3 24 0
4 25 1
98 64 O
99 65 1

100 69 1



Example 2

For logistic regression, we use glm().
» The syntax is
glm(y~x, family=binomial)
which is very similar to 1m().
» In fact
glm(y~x, family=gaussian)
and
Im(y~x)
are the samel

» glm() is a flexible function that can handle generalized linear
models.



Example 2

Fit the model

> ex2.glm<-glm(CHD~Age,family=binomial,data=ex2data)
> summary (ex2.glm)

Call:
glm(formula = CHD ~ Age, family = binomial, data = ex2data)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.9718 -0.8456 -0.4576 0.8253 2.2859



Example 2

Continued.

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -5.30945 1.13365 -4.683 2.82e-06 ***
Age 0.11092 0.02406 4.610 4.02e-06 **x

Signif. codes: O ‘***’ 0.001 ‘*x’> 0.01 ‘x’> 0.05 ‘.’ 0.1 ¢ > 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 136.66 on 99 degrees of freedom
Residual deviance: 107.35 on 98 degrees of freedom

AIC: 111.35

Number of Fisher Scoring iterations: 4



Example 2

Some observations.
» Can see that 8y = —5.30945 and 31 = 0.11092.
» Both intercept and predictor significant (but with z-tests).
» What about the “deviance” business? AIC?
> Interpretation:

~ 1
p(x) = 1 + e—(—5.3004510.11002x)

for example, at Age=50, then the probability of having CHD
is p(50) = 0.559.



Example 2

Prediction in R

> predict(ex2.glm, type = "response")



Example 2

Or for a particular X (Age) value,

> predict(ex2.glm, newdata=data.frame(Age=50),
type = "response")
1
0.5588765

or arbitrary Age (range)

> predict(ex2.glm,newdata=data.frame(Age=seq(1,100)),
type = "response")

Notice the options used.



Example 2

See the help file

> 7predict.glm



Example 2

Try anova().

> anova(ex2.glm)



Example 2

Add test option.

> anova(ex2.glm, test=’Chisq’)
Analysis of Deviance Table

Model: binomial, link: logit
Response: CHD
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev P(>|Chil)

NULL 99 136.66
Age 1 29.31 98 107.35 6.168e-08 *x*x*

Signif. codes: 0 ‘**x*’ 0.001 ‘x*’ 0.01 ‘*x’ 0.05 ‘.’ 0.1 ¢ > 1



Example 3

Data

>xy.data<-read.table("xy.data.txt",header=T)

> xy.data

D W N e
RN R M
= NNNNS<

24 2 1



Example 3

And
> xy.table<-table(xy.data)

> xy.table

y
X

N =
~N ok
IR



Example 3

Odds Ratio (OR)

> (xy.table[1,1]*xy.table[2,2])/(xy.table[1,2]*xy.table[2,1])
[1] 0.4897959



Example 3

Testing

> chisq.test(xy.table)

Pearson’s Chi-squared test with Yates’
continuity correction

data: xy.table
X-squared = 0.1983, df = 1, p-value = 0.656



Example 3

Now, fit the logistic regression.

> xy.glm<-glm(factor(y) factor(x),family=binomial,
data=xy.data)

> summary (xy.glm)

Call:
glm(formula = factor(y) ~ factor(x), family = binomial,
data = xy.data)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.2435 -1.0240 -0.9508 1.1127 1.4224



Example 3

Continued.
Coefficients:

Estimate Std. Error z value Pr(>lzl)
(Intercept) 0.1542 0.5563 0.277 0.782
factor(x)2 -0.7138 0.8381 -0.852 0.394

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 33.104 on 23 degrees of freedom
Residual deviance: 32.365 on 22 degrees of freedom

AIC: 36.365

Number of Fisher Scoring iterations: 4



Example 3

v

Note that 5 = —0.7138.
Recall that this number can be interpreted as log odds ratio.
Hence,

> exp(-0.7138)
[1] 0.4897795

i.e., e 07138 — (.4897795, which is very close to 0.4897959
found previously.

(It turns out that the actual value of 53 is —0.7137665, in
which case e~0-7137665 — (0.4897959.)



Example 3

Let us also see the “ANOVA" table.

> anova(xy.glm, test=’Chisq’)
Analysis of Deviance Table

Model: binomial, link: logit
Response: factor(y)
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 23 33.104
factor(x) 1 0.73878 22 32.365 0.3901



Extensions

More than one independent variable?
» For 2 variables X1, X5
» We have, suppressing i and writing p(x1, x2) = pj,

1

P(Xl,X2) - P(Y - 1|X1 =X, % = X2) - 1+ e~ (Bot+Bixi+B2x2)

» Since

log <p(X1’X2)> = Bo + Bix1 + Poxo
1 — p(x1, x2)



Extensions

» In general, if x = (x1,...,xp)
> Then
|0g< P(X) ) :BO+61X1+...+IBPXP

1 — p(x)

» Which implies
B 1

p(x) = 1 4+ e~ (Bo+Brxat--+Bpxp)

» Obtain p = p(x) by replacing 8's with B's

v

Other modifications (polynomial, interaction, etc.) possible



Extensions

Matrix notations:

> If 3 = (B1,...,B,). then
P(X) . /
'°g<1—p(x)> = ot

» So that
1

PX) = @



More Extensions

What if Y has more than 2 categories?

» If Y =1,2,..., kordered (i.e., 1 <2 < --- < k), then use
ordinal logistic regression.

» Otherwise, use nominal logistic regression.
> Very complicated. . .



Example 4

Read in data:

> ex4data<-read.table(’ex4data.txt’,header=T)
> ex4data
Y X1 X2
6.77 13.03
15.03 13.03
6.43 10.38
0.10 13.15
0.10 12.11

OB WN -
O O - B =

64 1 1.02 11.41



Example 4

Logistic regression: Start with

> ex4.glm<-glm(Y"X1%X2,family=binomial,data=ex4data)
> summary (ex4.glm)
> anova(ex4.glm, test=’Chisq’)

Output suppressed. . .



Example 4

Additive Model

> summary (glm(Y~X1+X2,family=binomial,data=ex4data))

Call:
glm(formula = Y ~ X1 + X2, family = binomial, data = ex4data)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.7043 -0.9583 0.1589 1.0026 1.5043



Example 4

Continued

Coefficients:

Estimate Std. Error z value Pr(>lzl)
(Intercept) 1.05339 .06941 0.985 0.3246
X1 0.21059 .08729 2.413 0.0158 *
X2 -0.16126 0.09858 -1.636 0.1019

o =

Signif. codes: 0 ‘xx*’ 0.001 ‘#*’ 0.01 ‘*> 0.05 “.” 0.1 ¢ > 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 88.473 on 63 degrees of freedom
Residual deviance: 73.626 on 61 degrees of freedom

AIC: 79.626

Number of Fisher Scoring iterations: 5



Example 4

Hence,

o>

log <1—I3> = 1.05339 + 0.21059X; — 0.16126 X

or
1

P = e~ (1.05339-+0.21050X, 0.16126 ;)

Should be clear from the context how to interpret the results.



Classification

» Two class (Y=0 or 1)
» With input X1,..., X,
» Predict which class your data belongs to (0 or 1)

» First, need to model with known Y
» Then, predict membership of Y, using inputs
» Can assess performance of your model (error rates)



Classification

> For example
» Y with O=normal, 1=disease
> X; = Age, Xo = BMI, X3 = BP
» At which Age, BMI, BP that make the person classified as
diseased?
» Many methods

> Logistic regression possible



Example

Recall Example 2
» Data: Coronary heart disease (CHD, response Y) and Age (X).
» Y is either yes (Y=1) or no (Y=0).
> Goal: investigate the effect of Age on CHD.



Example

Where
> Estimates 5o = —5.30945 and ; = 0.11092.

» And )

pl) = 1 | e—(—5.30045+0.11092x)

so that, at Age=50, the probability of having CHD is
p(50) = 0.559.
> At Age=40, the probability of having CHD is p(40) = 0.295.



Example

» Cutoff at 0.5

» Classify as Diseased (CHD) if p(x) > 0.5
» Classify as Normal if p(x) < 0.5

At Age=47, p(47) = 0.476

At Age=48, p(48) = 0.504

If 48 year old or older, then classified as CHD.
NOT realistic.

May want more inputs (X)

vVvYyyVvyy



Several Inputs

> Back to
» Y with 0=normal, 1=disease
> X; = Age, Xo = BMI, X3 = BP
» At which Age, BMI, BP that make the person classified as
diseased?
» Suppose that fy = —6, 81 = 0.02, B> = 0.06, 35 = 0.03

» Then

AN 1
p = p(x1,x2,x3) = 1 + e—(—6+0.02x1+0.06x+0.03x3)




Several Inputs

Try different combinations of (Age, BMI, BP)
> If (30,20, 120) then p = 0.354

If (50,20, 120) then = 0.450

If (30,30, 120) then p=0.5

If (50,30, 120) then p = 0.6

If (30,20, 150) then p = 0.574

> If (50,20,150) then p = 0.668

Many combinations to consider, interactions also possible.

vvvyYyy



Many Inputs

» More input variables (p) than number of participants (n)
» Modern research, more realistic
> Problem: Logistic regression cannot handle p > n

» Specialized methods



Many Inputs

For logistic regression
» Cannot use all Xi,..., X, inputs if p > n
» Work around

» Reduce dimension

» Principal component analysis (PCA)
» Regularized methods (Ridge, LASSO, Elastic Net)

» Result with X{, ..., X/, where k < n



More on Logistic Regression

Some unanswered questions
> How are the parameter estimation and testing done?
» Deviance?
> Why is the R function called the glm()?

» Best answered in terms of generalized linear models (GLM)



GLM

» Flexible modeling technique that includes many major/popular
regression methods.

P Linear regression, logistic regression.
> Unified theory.



GLM

Recall, for the (simple) logistic regression,
E(Yi|Xi) = P(Y; = 11X;) = pi

and

log <1 P ) = Bo + BuX;
— Pi

where

logit(p;) = log <1 fip'>



GLM

Whereas for the simple regression
Yi=DBo+ 51 Xi+ e

so that we have
E(Yi|Xi) = Bo + B1Xi

(why?)



GLM

More generally, we can use the matrix form to see that
E(Y)=p

and

where

lo _P ) lo 1 lo Pn
g 1—p g 1—p )7 g 1-p,

for the logistic regression




GLM

And,
E(Y)=Xp

for the (normal) linear regression (note that we let
E(Y) = E(Y|X) for convenience).

Any connections?



GLM Components

The GLM will have 3 main components

1. The random component: The data Y, which is random with
a distribution, and E(Y) = p.
2. The systematic component :

n=Xg
3. The link function: A function g(-) that links g with 7,
n=g(m)

(technically, n; = g(ui)).



GLM Components

For example,

» For logistic regression, Y has the binomial distribution with
E(Y)=p, and

bg@fp)szznzxﬂ

so that the link g(+) is the logit function.
» For linear regression, Y is normal with E(Y) = p = X33, and

p=gp)=n=X8

so that the link g(+) is the identity function.



GLM Components

» The GLM is the general method of regression that includes
many regression models as special cases.

» In the previous two cases, they possess all the components to
be a part of the GLM.

» More examples upcoming.



GLM Components

Another component
» Have not discusses the variance of Y, yet.
» If the variance of Y can be written in terms of p = E(Y).

» Then, we may have
var(Y;) = a(¢) V(i)

where
» The V/(-) is the variance function (as it relates to p)
» The ¢ is the dispersion parameter.



Exponential Family

> Assume that Y has the pdf of the form

yt — b(0)
a(o)

> If ¢ is known, then Y belong to an exponential family with
canonical parameter 6.

» If ¢ is unknown, then ?

» For 6, it is a function of © = E(Y), which in turn is a
function of j.

fy(y:0,0) = exp ( +c(y, ¢)>



Likelihood

» Key to understanding inference of GLM.
P> Have the pieces to get started.
P> Heavy and messy topic - only essentials covered.



Likelihood

» For individual Y;,

f(yi;0i,9) = exp (W + c(yis ¢)>
» Likelihood
L - i0i — b(6;)
L=T] f(yi61,0) = [Texp | L= + c(yi, 0)
,-E[l 8 Up< ag) VY )

(NOTE: Depending on situation, we may use any one of

L, L(6,¢;y), L y), L(B)

which are all equivalent).



Likelihood

» The log-likelihood

gt (0 s )

» Same comment above applies for the notation of /.



Estimation

Then
» Solve for §; from the equation
ot
=0
IBi

to obtain 3; (and 3).
> Note the chain rule
or %80; opi On;
B 00; Op; On; OB




Estimation

» For example, in linear regression,
B=(X'X)X'Y

» However, most other GLM models won't have a closed form
solution.

> Need to solve for 3 iteratively.



Estimation

One algorithm

» The score function:

9= 35~ (35)

((p+ 1) x 1 vector).
» The Fisher information (expected information matrix):

8)= (- <6§;€5>>

((p+1) x (p+ 1) matrix)



Estimation

Fisher scoring
» The algorithm

vvyYyy

Bl = g1 (B)s(81)

where 3() is the current estimate of 3 at the kth step.
Iterate until convergence, typically very quick.

Look familiar?

Other algorithms possible, but all iterative.

In R, the glm() uses another algorithm by default (although
very much related to Fisher scoring above).



Estimation

Once we have obtained the ,@

» For covariance (assuming that ¢ = 1), we can write
1(B) = X' WX
where W is the diagonal matrix with elements

(Opsi/ Omi)?
var(Y;)

» Then we have that
cov(B) = 171(B) = (X' WX) ™!

where W is W evaluated at ,é



Testing

We can then test for
Ho:ﬁ,':O VErsus HA:ﬂ,'#O

by using the test statistic

B Bi
Zj = =

S(B)  (XWX) /2

which approximately follows standard normal under Hp. (Note that
linear regression still follows the t-test, as before).



Deviance

Recall that R outputs had something called the deviance.
> What is it?
» Somewhat similar to model selection.

» Deviance: Compare a proposed model versus the “saturated”
model.

» Then: Compare the proposed model deviance against the
“null"” model deviance.

» How to compute it?



Deviance

Saturated model
» When all observation has a parameter each - perfect fit.
» In other words, =y

» Compare against a proposed model to get a deviance.



Deviance

Then

ML for the (proposed) model
ML for the saturated model

—2log = =2[(f;y) — Uy y)]

where

» ((f1;y) is the maximized log-likelihood for the proposed
model.

» ((y;y) is the maximized log-likelihood for the saturated
model, where pu = y is substituted in /(u; y)



Deviance

Now,
D(y: ) = =20[l(f; y) — Uy y)]
is called the (scaled) deviance. If ¢ =1, it is simply the deviance.

» The deviance D(y; f1) has the (approximate) x? distribution
with n — (p 4+ 1) degrees of freedom.

» The greater the deviance, the poorer the model fit.

> However. ..



Null Model

» We usually compare the proposed model against the null
model

» Null model: A model without parameters (except may be
intercept)

» Fit this model and obtain fig.

» We can then obtain the null deviance

D(y; fio) = —2¢[l(fr0;y) — U(y: y)]



Null Model

The R output displays both

» Null deviance
D(y; fio)

» Residual (proposed model) deviance

D(y: i)



AlC

Another output is concerned with AIC, which is defined as

AIC = =20(j1;y) +2p

» Used in model selection (like variable selection in regression)
» Smaller the AIC, the better the model.
> Again, not directly used.



GLM ANOVA

Finally,

> When we run anova on a glm object, we also get deviance
and residual deviances, with their differences as a chi-squared
statistic.

» Where

—2[l(f0; y) — (i y)] = D(y; fro) — D(y; )
is the difference of the two deviances, which also follows the
x? distribution.

» The degrees of freedom is the difference in the number of
parameters of the proposed and the null model.

» Hence the x°-test is to see if the proposed model is favored
over the null model.



Residuals

» R outputs deviance residuals.
» Used for diagnostics.

» Not covered here.



Binary Model

» Random component: Binomial

> We may have link functions other than logit.



Binary Model

Link (suppose that = p)

» Logit (logistic regression)

g(1) = logit(u) = log  ——

1—p
> Probit
g(u) =07 (n)
where ®(+) is the cdf of N(0,1).

» Complementary log-log

g(p) = log(—log(1 — 1))
All available in R.



Example 5

Continue with Example 4

> #ex4.glm<-glm(Y~X1*X2,family=binomial,data=ex4data)
> summary (ex4.glm)
> anova(ex4.glm, test=’Chisq’)

The default link is logit, so that the above is equal to

> ex4.glm1<-glm(Y~X1*X2,family=binomial (1ink="logit") ,data=ex4data)
> summary (ex4.glml)
> anova(ex4.glml, test=’Chisq’)



Example 5

Probit link:

> ex4.glm2<-glm(Y~"X1*X2,family=binomial (link="probit"),
data=ex4data)

> summary (ex4.glm2)

> anova(ex4.glm2, test=’Chisq’)

Complementary log-log link:

> ex4.glm3<-glm(Y"X1xX2,family=binomial (1ink="cloglog"),
data=ex4data)

> summary (ex4.glm3)

> anova(ex4.glm3, test=’Chisq’)



Log Linear Model

A GLM with

» Poisson random component
Y ~ Poisson()

> Link: log
g(n) = log(k)
» We have that, with E(Y) = p,

log(p) = g(p) =n=XB

where
log(pe) = (log(pa, ) .- -, log(pn))’



Log Linear Model

» Data Y: Counts
» Independent variable(s)

» May be discrete or continuous, or both
» |If independent variable discrete: Can see relationship with
contingency table

Very similar to the logistic regression in the set up.



Example 6

From help(glm)

> counts <- ¢(18,17,15,20,10,20,25,13,12)

> outcome <- gl(3,1,9)

> treatment <- gl(3,3)

> data.frame(treatment, outcome, counts))
treatment outcome counts

1 1 1 18

2 1 2 17

3 1 3 15

4 2 1 20

5 2 2 10

6 2 3 20

7 3 1 25

8 3 2 13

9 3 3 12



Example 6

Run the log linear model (with family=poisson)

> glm.D93 <- glm(counts ~ outcome + treatment,
family = poisson())

> anova(glm.D93)

Analysis of Deviance Table

Model: poisson, link: log
Response: counts
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev
NULL 8 10.5814
outcome 2 5.4523 6 5.1291
treatment 2 0.0000 4 5.1291



Example 6

Running summary ()

> summary (glm.D93)

Call:
glm(formula = counts
family = poisson())

outcome + treatment,

Deviance Residuals:
1 2 3 4 5 6 7 8
-0.67125 0.96272 -0.16965 -0.21999 -0.95552 1.04939 0.84715 -0.09167



Example 6

Continued

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 3.045e+00 1.709e-01 17.815  <2e-16 *x*x*
outcome2 -4.543e-01 2.022e-01 -2.247 0.0246 *
outcome3 -2.930e-01 1.927e-01 -1.520 0.1285
treatment2 1.338e-15 2.000e-01 0.000 1.0000
treatment3  1.421e-15 2.000e-01  0.000  1.0000

Signif. codes: O ‘xx*’ 0.001 ‘#*’ 0.01 ‘*> 0.05 ‘.’ 0.1 ¢ > 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 10.5814 on 8 degrees of freedom
Residual deviance: 5.1291 on 4 degrees of freedom

AIC: 56.761

Number of Fisher Scoring iterations: 4



Example 6

» Relationship with tables?
» What if we ran ordinary (normal) ANOVA?



Example 6

Log linear model with Poisson family:

P Also called a Poisson regression



Example 7

Galapagos Dataset

library(alr4)

galapagos
7galapagos

summary (galapagos)
plot (galapagos)

Which predictors/factors contribute to the number of species?



Example 7

Fit a Poisson regression/log linear model (on select variables)
gala.a.poi<-glm(NS~Area, family=poisson, data=galapagos)
summary (gala.a.poi)

gala.e.poi<-glm(NS"Elevation, family=poisson, data=galapagos)
summary (gala.e.poi)

gala.ae.poi<-glm(NS~Areat+Elevation, family=poisson, data=galapagos)
summary (gala.ae.poi)

gala.ane.poi<-glm(NS~Area+Anear+Elevation, family=poisson, data=galapagos)
summary (gala.ane.poi)

gala.ade.poi<-glm(NS~Areat+Dist+Elevation, family=poisson, data=galapagos)
summary (gala.ade.poi)



Example 7

Possible to do the following (bad practice)

gala.all.poi<-glm(NS~., family=poisson, data=galapagos)
summary (gala.all.poi)
step(gala.all.poi)

gala.poi<-glm(NS~., family=poisson, data=galapagos[complete.cases(galapagos),])
summary (gala.poi)

gala.poi.step<-step(gala.poi)

summary (gala.poi.step)

anova(gala.poi.step)



Other Models

» Other models possible in GLM with different random
component (distribution) and link.

» For example, Gamma random component with inverse link.

» Not covered here, but if interested. ..



More?

» Yes, there is much more to it than presented here.

» Omitted topics: plots, diagnostics, model selection, other
GLM models, etc.

» Some topics covered in future lectures.



