
MATH 5910
Logistic Regression and GLM



Logistic Regression

I Consider a regression model with binary response.
I Logistic regression: one possible model.

I Popular.
I Other methods possible.

I Independent variables: can be continuous or discrete (or
both).

I Close connection to contingency tables.



Logistic Regression

Concentrate on binary response

Y = 0 or 1

Suppose we have one independent variable X (either discrete or
continuous).

How to model?

Note: May have more than one independent variables, in general.



Model

Assume that the data Y1, . . . ,Yn are iid.

Let
pi = P(Yi = 1|Xi ),

the probability of “success.”

Note
E (Yi |Xi ) = P(Yi = 1|Xi ) = pi



Model

Then

log

(
pi

1− pi

)
= β0 + β1Xi

is the logistic model.

We have the logit transform

logit(pi ) = log

(
pi

1− pi

)
hence the name logistic regression.



Model

Can be seen that
pi

1− pi
= eβ0+β1Xi

or

pi = P(Yi = 1|Xi ) =
eβ0+β1Xi

1 + eβ0+β1Xi

=
1

1 + e−(β0+β1Xi )

Note the missing error term (why?).



Estmation

Now, both β0 and β1 can be estimated based on data (details
postponed; can be done in R), so that

p̂i =
1

1 + e−(β̂0+β̂1Xi )

where β̂0 and β̂1 are estimates of β0 and β1, respectively.

Or

logit(p̂i ) = log

(
p̂i

1− p̂i

)
= β̂0 + β̂1Xi



Testing

I Individual terms:

H0 : β = 0 vs. HA : β 6= 0

I Overall fit: Goodness-of-fit, comparing proposed model
against the null model - use χ2 test.



Example 1

I Data table:
Y
1 0

X 1 7 3 10
0 14 82 96

21 85 106

I Y : 0 = Survive, 1 = Death

I X : 0= No Shock, 1= Shock

Original data: X and Y binary (0 or 1).



Example 1

Analysis - no R for this example.

I We have that β̂0 = −1.768 and β̂1 = 2.615.

I Then
logit(p̂) = −1.768 + 2.615X

I Or

p̂ =
1

1 + e−(−1.768+2.615X )



Example 1

I For X = 0,

p̂(0) = P̂(Y = 1|X = 0) =
1

1 + e−(−1.768)
= 0.146

I For X = 1,

p̂(1) = P̂(Y = 1|X = 1) =
1

1 + e−(−1.768+2.615)
= 0.7



Example 1

Interpretations

I P̂(Y = 1|X = 0) = 0.146: Given that no shock was present
(X = 0), the estimated probability that a patient dies
(Y = 1) is 0.146.

I P̂(Y = 1|X = 1) = 0.7: Given that shock was present
(X = 1), the estimated probability that a patient dies
(Y = 1) is 0.7.

Is it that complicated?

Table.



Example 1

Another interpretation:

β̂1 = 2.615 is the (estimated) log odds ratio.

How?



Example 1

Recall:

I Can transform probability into odds: odds = p/(1− p)

I For convenience, let p(x) = P(Y = 1|X = x), and

odds(x) =
p(x)

1− p(x)

so we can have odds(0) and odds(1)

I OR is the odds ratio, i.e.

OR =
odds(1)

odds(0)
=

p(1)/(1− p(1))

p(0)/(1− p(0))



Example 1

Then the log odds ratio is

log OR = log

(
p(1)/(1− p(1))

p(0)/(1− p(0))

)
= log

(
p(1)

1− p(1)

)
− log

(
p(0)

1− p(0)

)
= logit(p(1))− logit(p(0))



Example 1

But since we are dealing with estimates,

log ÔR = logit(p̂(1))− logit(p̂(0))

= β̂0 + β̂1 · 1− β̂0 − β̂1 · 0
= β̂1

= 2.615



Example 1

To verify (with our set up)

ÔR =
7 · 82

3 · 14
= 13.667

and that
log ÔR = 2.615

as was to be seen.



Example 1

Also,

p̂(x) = P̂(Y = 1|X = x) =
1

1 + e−(−1.768+2.615x)

for this particular example, or

p̂(x) = P̂(Y = 1|X = x) =
1

1 + e−(β̂0+β̂1x)

in general. Hence, each change in x will affect p̂(x) in the above
(nonlinear) fashion.

Compare this against the linear regression model.



Example 2

This time, we will use R.

I Data: Coronary heart disease (CHD, response Y) and Age (X).

I Y is either yes (Y=1) or no (Y=0).

I Goal: investigate the effect of Age on CHD.



Example 2

Read in and inspect data.

> ex2data<-read.table(’ex2data.txt’,header=T)

> ex2data

Age CHD

1 20 0

2 23 0

3 24 0

4 25 1

:

98 64 0

99 65 1

100 69 1



Example 2

For logistic regression, we use glm().

I The syntax is

glm(y~x, family=binomial)

which is very similar to lm().

I In fact

glm(y~x, family=gaussian)

and

lm(y~x)

are the same!

I glm() is a flexible function that can handle generalized linear
models.



Example 2

Fit the model

> ex2.glm<-glm(CHD~Age,family=binomial,data=ex2data)

> summary(ex2.glm)

Call:

glm(formula = CHD ~ Age, family = binomial, data = ex2data)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.9718 -0.8456 -0.4576 0.8253 2.2859



Example 2

Continued.

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.30945 1.13365 -4.683 2.82e-06 ***

Age 0.11092 0.02406 4.610 4.02e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 136.66 on 99 degrees of freedom

Residual deviance: 107.35 on 98 degrees of freedom

AIC: 111.35

Number of Fisher Scoring iterations: 4



Example 2

Some observations.

I Can see that β̂0 = −5.30945 and β̂1 = 0.11092.

I Both intercept and predictor significant (but with z-tests).

I What about the “deviance” business? AIC?

I Interpretation:

p̂(x) =
1

1 + e−(−5.30945+0.11092x)

for example, at Age=50, then the probability of having CHD
is p̂(50) = 0.559.



Example 2

Prediction in R

> predict(ex2.glm, type = "response")



Example 2

Or for a particular X (Age) value,

> predict(ex2.glm, newdata=data.frame(Age=50),

type = "response")

1

0.5588765

or arbitrary Age (range)

> predict(ex2.glm,newdata=data.frame(Age=seq(1,100)),

type = "response")

Notice the options used.



Example 2

See the help file

> ?predict.glm



Example 2

Try anova().

> anova(ex2.glm)



Example 2

Add test option.

> anova(ex2.glm, test=’Chisq’)

Analysis of Deviance Table

Model: binomial, link: logit

Response: CHD

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 99 136.66

Age 1 29.31 98 107.35 6.168e-08 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Example 3

Data

>xy.data<-read.table("xy.data.txt",header=T)

> xy.data

x y

1 1 2

2 2 2

3 1 2

4 1 1

:

24 2 1



Example 3

And

> xy.table<-table(xy.data)

> xy.table

y

x 1 2

1 6 7

2 7 4



Example 3

Odds Ratio (OR)

> (xy.table[1,1]*xy.table[2,2])/(xy.table[1,2]*xy.table[2,1])

[1] 0.4897959



Example 3

Testing

> chisq.test(xy.table)

Pearson’s Chi-squared test with Yates’

continuity correction

data: xy.table

X-squared = 0.1983, df = 1, p-value = 0.656



Example 3

Now, fit the logistic regression.

> xy.glm<-glm(factor(y)~factor(x),family=binomial,

data=xy.data)

> summary(xy.glm)

Call:

glm(formula = factor(y) ~ factor(x), family = binomial,

data = xy.data)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.2435 -1.0240 -0.9508 1.1127 1.4224



Example 3

Continued.

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.1542 0.5563 0.277 0.782

factor(x)2 -0.7138 0.8381 -0.852 0.394

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 33.104 on 23 degrees of freedom

Residual deviance: 32.365 on 22 degrees of freedom

AIC: 36.365

Number of Fisher Scoring iterations: 4



Example 3

I Note that β̂ = −0.7138.

I Recall that this number can be interpreted as log odds ratio.

I Hence,

> exp(-0.7138)

[1] 0.4897795

i.e., e−0.7138 = 0.4897795, which is very close to 0.4897959
found previously.

I (It turns out that the actual value of β̂ is −0.7137665, in
which case e−0.7137665 = 0.4897959.)



Example 3

Let us also see the “ANOVA” table.

> anova(xy.glm, test=’Chisq’)

Analysis of Deviance Table

Model: binomial, link: logit

Response: factor(y)

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 23 33.104

factor(x) 1 0.73878 22 32.365 0.3901



Extensions

More than one independent variable?

I For 2 variables X1, X2

I We have, suppressing i and writing p(x1, x2) = pi ,

p(x1, x2) = P(Y = 1|X1 = x1,X2 = x2) =
1

1 + e−(β0+β1x1+β2x2)

I Since

log

(
p(x1, x2)

1− p(x1, x2)

)
= β0 + β1x1 + β2x2



Extensions

I In general, if x = (x1, . . . , xp)′

I Then

log

(
p(x)

1− p(x)

)
= β0 + β1x1 + · · ·+ βpxp

I Which implies

p(x) =
1

1 + e−(β0+β1x1+···+βpxp)

I Obtain p̂ = p̂(x) by replacing β’s with β̂’s

I Other modifications (polynomial, interaction, etc.) possible



Extensions

Matrix notations:

I If β′ = (β1, . . . , βp), then

log

(
p(x)

1− p(x)

)
= β0 + β′x

I So that

p(x) =
1

1 + e−(β0+β′x)



More Extensions

What if Y has more than 2 categories?

I If Y = 1, 2, . . . , k ordered (i.e., 1 < 2 < · · · < k), then use
ordinal logistic regression.

I Otherwise, use nominal logistic regression.

I Very complicated. . .



Example 4

Read in data:

> ex4data<-read.table(’ex4data.txt’,header=T)

> ex4data

Y X1 X2

1 1 6.77 13.03

2 1 15.03 13.03

3 1 6.43 10.38

4 0 0.10 13.15

5 0 0.10 12.11

:

64 1 1.02 11.41



Example 4

Logistic regression: Start with

> ex4.glm<-glm(Y~X1*X2,family=binomial,data=ex4data)

> summary(ex4.glm)

> anova(ex4.glm, test=’Chisq’)

Output suppressed. . .



Example 4

Additive Model

> summary(glm(Y~X1+X2,family=binomial,data=ex4data))

Call:

glm(formula = Y ~ X1 + X2, family = binomial, data = ex4data)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.7043 -0.9583 0.1589 1.0026 1.5043



Example 4

Continued

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.05339 1.06941 0.985 0.3246

X1 0.21059 0.08729 2.413 0.0158 *

X2 -0.16126 0.09858 -1.636 0.1019

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 88.473 on 63 degrees of freedom

Residual deviance: 73.626 on 61 degrees of freedom

AIC: 79.626

Number of Fisher Scoring iterations: 5



Example 4

Hence,

log

(
p̂

1− p̂

)
= 1.05339 + 0.21059X1 − 0.16126X2

or

p̂ =
1

1 + e−(1.05339+0.21059X1−0.16126X2)

Should be clear from the context how to interpret the results.



Classification

I Two class (Y=0 or 1)

I With input X1, . . . ,Xp

I Predict which class your data belongs to (0 or 1)
I First, need to model with known Y
I Then, predict membership of Y, using inputs
I Can assess performance of your model (error rates)



Classification

I For example
I Y with 0=normal, 1=disease
I X1 = Age, X2 = BMI, X3 = BP
I At which Age, BMI, BP that make the person classified as

diseased?

I Many methods

I Logistic regression possible



Example

Recall Example 2

I Data: Coronary heart disease (CHD, response Y) and Age (X).

I Y is either yes (Y=1) or no (Y=0).

I Goal: investigate the effect of Age on CHD.



Example

Where

I Estimates β̂0 = −5.30945 and β̂1 = 0.11092.

I And

p̂(x) =
1

1 + e−(−5.30945+0.11092x)

so that, at Age=50, the probability of having CHD is
p̂(50) = 0.559.

I At Age=40, the probability of having CHD is p̂(40) = 0.295.



Example

I Cutoff at 0.5
I Classify as Diseased (CHD) if p̂(x) > 0.5
I Classify as Normal if p̂(x) < 0.5

I At Age=47, p̂(47) = 0.476

I At Age=48, p̂(48) = 0.504

I If 48 year old or older, then classified as CHD.

I NOT realistic.

I May want more inputs (X)



Several Inputs

I Back to
I Y with 0=normal, 1=disease
I X1 = Age, X2 = BMI, X3 = BP
I At which Age, BMI, BP that make the person classified as

diseased?

I Suppose that β̂0 = −6, β̂1 = 0.02, β̂2 = 0.06, β̂3 = 0.03

I Then

p̂ = p̂(x1, x2, x3) =
1

1 + e−(−6+0.02x1+0.06x2+0.03x3)



Several Inputs

Try different combinations of (Age, BMI, BP)

I If (30, 20, 120) then p̂ = 0.354

I If (50, 20, 120) then p̂ = 0.450

I If (30, 30, 120) then p̂ = 0.5

I If (50, 30, 120) then p̂ = 0.6

I If (30, 20, 150) then p̂ = 0.574

I If (50, 20, 150) then p̂ = 0.668

Many combinations to consider, interactions also possible.



Many Inputs

I More input variables (p) than number of participants (n)

I Modern research, more realistic

I Problem: Logistic regression cannot handle p > n

I Specialized methods



Many Inputs

For logistic regression

I Cannot use all X1, . . . ,Xp inputs if p > n

I Work around
I Reduce dimension

I Principal component analysis (PCA)
I Regularized methods (Ridge, LASSO, Elastic Net)

I Result with X ∗1 , . . . ,X
∗
k , where k < n



More on Logistic Regression

Some unanswered questions

I How are the parameter estimation and testing done?

I Deviance?

I Why is the R function called the glm()?

I Best answered in terms of generalized linear models (GLM)



GLM

I Flexible modeling technique that includes many major/popular
regression methods.

I Linear regression, logistic regression.

I Unified theory.



GLM

Recall, for the (simple) logistic regression,

E (Yi |Xi ) = P(Yi = 1|Xi ) = pi

and

log

(
pi

1− pi

)
= β0 + β1Xi

where

logit(pi ) = log

(
pi

1− pi

)



GLM

Whereas for the simple regression

Yi = β0 + β1Xi + εi

so that we have
E (Yi |Xi ) = β0 + β1Xi

(why?)



GLM

More generally, we can use the matrix form to see that

E (Y ) = p

and

log

(
p

1− p

)
= Xβ

where

log

(
p

1− p

)
=

(
log

(
p1

1− p1

)
, . . . , log

(
pn

1− pn

))′
for the logistic regression



GLM

And,
E (Y ) = Xβ

for the (normal) linear regression (note that we let
E (Y ) ≡ E (Y |X ) for convenience).

Any connections?



GLM Components

The GLM will have 3 main components

1. The random component: The data Y , which is random with
a distribution, and E (Y ) = µ.

2. The systematic component :

η = Xβ

3. The link function: A function g(·) that links µ with η,

η = g(µ)

(technically, ηi = g(µi )).



GLM Components

For example,

I For logistic regression, Y has the binomial distribution with
E (Y ) = p, and

log

(
p

1− p

)
= g(p) = η = Xβ

so that the link g(·) is the logit function.

I For linear regression, Y is normal with E (Y ) = µ = Xβ, and

µ = g(µ) = η = Xβ

so that the link g(·) is the identity function.



GLM Components

I The GLM is the general method of regression that includes
many regression models as special cases.

I In the previous two cases, they possess all the components to
be a part of the GLM.

I More examples upcoming.



GLM Components

Another component

I Have not discusses the variance of Y , yet.

I If the variance of Y can be written in terms of µ = E (Y ).

I Then, we may have

var(Yi ) = a(φ)V (µi )

where
I The V (·) is the variance function (as it relates to µ)
I The φ is the dispersion parameter.



Exponential Family

I Assume that Y has the pdf of the form

fY (y ; θ, φ) = exp

(
yθ − b(θ)

a(φ)
+ c(y , φ)

)
I If φ is known, then Y belong to an exponential family with

canonical parameter θ.

I If φ is unknown, then ?

I For θ, it is a function of µ = E (Y ), which in turn is a
function of β.



Likelihood

I Key to understanding inference of GLM.

I Have the pieces to get started.

I Heavy and messy topic - only essentials covered.



Likelihood

I For individual Yi ,

f (yi ; θi , φ) = exp

(
yiθi − b(θi )

a(φ)
+ c(yi , φ)

)
I Likelihood

L =
n∏

i=1

f (yi ; θi , φ) =
n∏

i=1

exp

(
yiθi − b(θi )

a(φ)
+ c(yi , φ)

)
(NOTE: Depending on situation, we may use any one of

L, L(θ, φ; y), L(µ; y), L(β)

which are all equivalent).



Likelihood

I The log-likelihood

` = log L =
n∑

i=1

(
yiθi − b(θi )

a(φ)
+ c(yi , φ)

)
I Same comment above applies for the notation of `.



Estimation

Then

I Solve for βi from the equation

∂`

∂βi
= 0

to obtain β̂i (and β̂).

I Note the chain rule

∂`

∂βi
=

∂`

∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βi



Estimation

I For example, in linear regression,

β̂ = (X ′X )−1X ′Y

I However, most other GLM models won’t have a closed form
solution.

I Need to solve for β̂ iteratively.



Estimation

One algorithm

I The score function:

s(β) =
∂`

∂β
=

(
∂`

∂βi

)
((p + 1)× 1 vector).

I The Fisher information (expected information matrix):

I (β) =

(
−E

(
∂2`

∂βi∂βj

))
((p + 1)× (p + 1) matrix)



Estimation

Fisher scoring

I The algorithm

β(t+1) = β(t)I−1(β(t))s(β(t))

where β(t) is the current estimate of β at the kth step.

I Iterate until convergence, typically very quick.

I Look familiar?

I Other algorithms possible, but all iterative.

I In R, the glm() uses another algorithm by default (although
very much related to Fisher scoring above).



Estimation

Once we have obtained the β̂,

I For covariance (assuming that φ = 1), we can write

I (β) = X ′WX

where W is the diagonal matrix with elements

wi =
(∂µi/∂ηi )

2

var(Yi )

I Then we have that

ĉov(β̂) = I−1(β̂) = (X ′ŴX )−1

where Ŵ is W evaluated at β̂.



Testing

We can then test for

H0 : βi = 0 versus HA : βi 6= 0

by using the test statistic

zi =
β̂i

ŝe(β̂)
=

β̂i

(X ′ŴX )−1/2

which approximately follows standard normal under H0. (Note that
linear regression still follows the t-test, as before).



Deviance

Recall that R outputs had something called the deviance.
I What is it?

I Somewhat similar to model selection.
I Deviance: Compare a proposed model versus the “saturated”

model.
I Then: Compare the proposed model deviance against the

“null” model deviance.

I How to compute it?



Deviance

Saturated model

I When all observation has a parameter each - perfect fit.

I In other words, µ = y
I Compare against a proposed model to get a deviance.



Deviance

Then

−2 log
ML for the (proposed) model

ML for the saturated model
= −2[`(µ̂; y)− `(y ; y)]

where

I `(µ̂; y) is the maximized log-likelihood for the proposed
model.

I `(y ; y) is the maximized log-likelihood for the saturated
model, where µ = y is substituted in `(µ; y)



Deviance

Now,
D(y ; µ̂) = −2φ[`(µ̂; y)− `(y ; y)]

is called the (scaled) deviance. If φ = 1, it is simply the deviance.

I The deviance D(y ; µ̂) has the (approximate) χ2 distribution
with n − (p + 1) degrees of freedom.

I The greater the deviance, the poorer the model fit.

I However. . .



Null Model

I We usually compare the proposed model against the null
model

I Null model: A model without parameters (except may be
intercept)

I Fit this model and obtain µ̂0.

I We can then obtain the null deviance

D(y ; µ̂0) = −2φ[`(µ̂0; y)− `(y ; y)]



Null Model

The R output displays both

I Null deviance
D(y ; µ̂0)

I Residual (proposed model) deviance

D(y ; µ̂)



AIC

Another output is concerned with AIC, which is defined as

AIC = −2`(µ̂; y) + 2p

I Used in model selection (like variable selection in regression)

I Smaller the AIC, the better the model.

I Again, not directly used.



GLM ANOVA

Finally,

I When we run anova on a glm object, we also get deviance
and residual deviances, with their differences as a chi-squared
statistic.

I Where

−2[`(µ̂0; y)− `(µ̂; y)] = D(y ; µ̂0)− D(y ; µ̂)

is the difference of the two deviances, which also follows the
χ2 distribution.

I The degrees of freedom is the difference in the number of
parameters of the proposed and the null model.

I Hence the χ2-test is to see if the proposed model is favored
over the null model.



Residuals

I R outputs deviance residuals.

I Used for diagnostics.

I Not covered here.



Binary Model

I Random component: Binomial

I We may have link functions other than logit.



Binary Model

Link (suppose that µ = p)

I Logit (logistic regression)

g(µ) = logit(µ) = log

(
µ

1− µ

)
I Probit

g(µ) = Φ−1(µ)

where Φ(·) is the cdf of N(0, 1).

I Complementary log-log

g(µ) = log(− log(1− µ))

All available in R.



Example 5

Continue with Example 4

> #ex4.glm<-glm(Y~X1*X2,family=binomial,data=ex4data)

> summary(ex4.glm)

> anova(ex4.glm, test=’Chisq’)

The default link is logit, so that the above is equal to

> ex4.glm1<-glm(Y~X1*X2,family=binomial(link="logit"),data=ex4data)

> summary(ex4.glm1)

> anova(ex4.glm1, test=’Chisq’)



Example 5

Probit link:

> ex4.glm2<-glm(Y~X1*X2,family=binomial(link="probit"),

data=ex4data)

> summary(ex4.glm2)

> anova(ex4.glm2, test=’Chisq’)

Complementary log-log link:

> ex4.glm3<-glm(Y~X1*X2,family=binomial(link="cloglog"),

data=ex4data)

> summary(ex4.glm3)

> anova(ex4.glm3, test=’Chisq’)



Log Linear Model

A GLM with

I Poisson random component

Y ∼ Poisson(µ)

I Link: log
g(µ) = log(µ)

I We have that, with E (Y ) = µ,

log(µ) = g(µ) = η = Xβ

where
log(µ) = (log(µ1, ) . . . , log(µn))′



Log Linear Model

I Data Y : Counts
I Independent variable(s)

I May be discrete or continuous, or both
I If independent variable discrete: Can see relationship with

contingency table

Very similar to the logistic regression in the set up.



Example 6

From help(glm)

> counts <- c(18,17,15,20,10,20,25,13,12)

> outcome <- gl(3,1,9)

> treatment <- gl(3,3)

> data.frame(treatment, outcome, counts))

treatment outcome counts

1 1 1 18

2 1 2 17

3 1 3 15

4 2 1 20

5 2 2 10

6 2 3 20

7 3 1 25

8 3 2 13

9 3 3 12



Example 6

Run the log linear model (with family=poisson)

> glm.D93 <- glm(counts ~ outcome + treatment,

family = poisson())

> anova(glm.D93)

Analysis of Deviance Table

Model: poisson, link: log

Response: counts

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 8 10.5814

outcome 2 5.4523 6 5.1291

treatment 2 0.0000 4 5.1291



Example 6

Running summary()

> summary(glm.D93)

Call:

glm(formula = counts ~ outcome + treatment,

family = poisson())

Deviance Residuals:

1 2 3 4 5 6 7 8 9

-0.67125 0.96272 -0.16965 -0.21999 -0.95552 1.04939 0.84715 -0.09167 -0.96656



Example 6

Continued

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.045e+00 1.709e-01 17.815 <2e-16 ***

outcome2 -4.543e-01 2.022e-01 -2.247 0.0246 *

outcome3 -2.930e-01 1.927e-01 -1.520 0.1285

treatment2 1.338e-15 2.000e-01 0.000 1.0000

treatment3 1.421e-15 2.000e-01 0.000 1.0000

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 10.5814 on 8 degrees of freedom

Residual deviance: 5.1291 on 4 degrees of freedom

AIC: 56.761

Number of Fisher Scoring iterations: 4



Example 6

I Relationship with tables?

I What if we ran ordinary (normal) ANOVA?



Example 6

Log linear model with Poisson family:

I Also called a Poisson regression



Example 7

Galapagos Dataset

library(alr4)

galapagos

?galapagos

summary(galapagos)

plot(galapagos)

Which predictors/factors contribute to the number of species?



Example 7

Fit a Poisson regression/log linear model (on select variables)

gala.a.poi<-glm(NS~Area, family=poisson, data=galapagos)

summary(gala.a.poi)

gala.e.poi<-glm(NS~Elevation, family=poisson, data=galapagos)

summary(gala.e.poi)

gala.ae.poi<-glm(NS~Area+Elevation, family=poisson, data=galapagos)

summary(gala.ae.poi)

gala.ane.poi<-glm(NS~Area+Anear+Elevation, family=poisson, data=galapagos)

summary(gala.ane.poi)

gala.ade.poi<-glm(NS~Area+Dist+Elevation, family=poisson, data=galapagos)

summary(gala.ade.poi)



Example 7

Possible to do the following (bad practice)

gala.all.poi<-glm(NS~., family=poisson, data=galapagos)

summary(gala.all.poi)

step(gala.all.poi)

gala.poi<-glm(NS~., family=poisson, data=galapagos[complete.cases(galapagos),])

summary(gala.poi)

gala.poi.step<-step(gala.poi)

summary(gala.poi.step)

anova(gala.poi.step)



Other Models

I Other models possible in GLM with different random
component (distribution) and link.

I For example, Gamma random component with inverse link.

I Not covered here, but if interested. . .



More?

I Yes, there is much more to it than presented here.
I Omitted topics: plots, diagnostics, model selection, other

GLM models, etc.
I Some topics covered in future lectures.


