
MATH 5910
Multiple Comparisons



Multiple Comparisons

I Simultaneous inference.

I Corrections of multiplicity.

I Identify the significant components.

I Introduce some modern ideas.



More Than 2 Groups

I Example: 3 groups (populations).

I Data:
A B C

4, 2, 5, 2, 3 6, 3, 5, 3, 6 5, 4, 6, 7, 6, 5, 7, 2, 3, 5

I Want to see if all 3 group means are equal.

I Already know: Use ANOVA

I Other ways to look at this?



Multiple Comparisons

I There are different ways to do this.

I Can perform pairwise comparisons.

I How many comparisons?



Multiple Comparisons

I Compare: A-B, A-C, B-C

I There are 3 comparisons.

I Or mathematically, (
3

2

)
=

3!

2!1!
= 3

I In general, if there are k groups to compare, then there are(
k

2

)
=

k!

2!(k − 2)!
comparisons.



Example

Enter data:

> Y<-c(4,2,5,2,3,6,3,5,3,6,5,4,6,7,6,5,7,2,3,5)

> X<-c(rep("A",5),rep("B",5),rep("C",10))

Plot:

> boxplot(Y~X)



Example

Try

> t.test(Y~X)

Error in t.test.formula(Y ~ X) :

grouping factor must have exactly 2 levels

Doesn’t work.



Example

Do pairwise comparisons (with suppressed output)

# A vs. B

> t.test(Y[1:10]~X[1:10])

t = -1.5652, df = 7.824, p-value = 0.157

# A vs. C

> t.test(Y[c(1:5,11:20)]~X[c(1:5,11:20)])

t = -2.311, df = 10.001, p-value = 0.04343

# B vs. C

> t.test(Y[6:20]~X[6:20])

t = -0.4692, df = 8.685, p-value = 0.6505



Example

Same as before

t.test(Y[X==’A’|X==’B’]~X[X==’A’|X==’B’])

t.test(Y[X==’A’|X==’C’]~X[X==’A’|X==’C’])

t.test(Y[X==’B’|X==’C’]~X[X==’B’|X==’C’])



Example

I Comparing A vs C yields a p-value of 0.04.

I Conclude significant difference between A and C at α = 0.05?

I And conclude significant difference of A-B-C?

I NO to both

I Need adjustment.



Bonferroni

Bonferroni adjustment

I Simplest adjustment.

I Divide α by the number of comparisons.

I In this case, α/3, or 0.05/3 = 0.0167

I Now, all 3 p-values greater than 0.0167.

I No significant difference



Bonferroni

Equivalently, can also do:

I Multiply p-value by the number of comparisons (3 in this case)

I Then compare it with α.

I The adjusted p-value: p = 3 × 0.04 = 0.12.

I Same conclusion.

I If the adjusted p-value bigger than 1: usually set to 1.



Bonferroni

If there are k groups.

I Divide α by
(k
2

)
I Examples:

> choose(3,2)

[1] 3

> choose(4,2)

[1] 6

> choose(10,2)

[1] 45



Bonferroni

I Bonferroni: Simple, but can be problematic (why?)

I Other solutions to this issue



ANOVA

A proper way to assess more than 2 groups

# Same

> anova(lm(Y~X))

> summary(aov(Y~X))

May still need a follow up. . .



Follow Up

I ANOVA, follow-up.

I High-dimensional/massive variable dataset (concepts).



Idea

I Once you determine significance, overall.

I Natural to look for where the difference occurs.

I But needs correction because you are testing many things at
once.



ANOVA Example

I Look back to ANOVA.

I If we have Y (continuous response) and X (factor with
several levels), run ANOVA.

I Suppose that X is significant, meaning there is difference in
mean between levels of X .

I Which levels are different?



ANOVA Example

I Many ways to solve this multiple comparison.

I Easier to do in SAS.
I Can still do in R.

I Tukey’s method (all pairwise comparisons).
I Function: TukeyHSD()



ANOVA Example

In R

> warpbreaks

breaks wool tension

1 26 A L

2 30 A L

3 54 A L

4 25 A L

5 70 A L

6 52 A L

7 51 A L

8 26 A L

9 67 A L

10 18 A M

:

54 28 B H



ANOVA Example

From help file ?TukeyHSD

> summary(fm1 <- aov(breaks ~ wool + tension,

data = warpbreaks))

Df Sum Sq Mean Sq F value Pr(>F)

wool 1 450.7 450.67 3.3393 0.073614 .

tension 2 2034.3 1017.13 7.5367 0.001378 **

Residuals 50 6747.9 134.96

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note the aov() function.



ANOVA Example

Same as

> anova(lm(breaks ~ wool + tension, data = warpbreaks))

Analysis of Variance Table

Response: breaks

Df Sum Sq Mean Sq F value Pr(>F)

wool 1 450.7 450.67 3.3393 0.073614 .

tension 2 2034.3 1017.13 7.5367 0.001378 **

Residuals 50 6747.9 134.96

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Either case, tension is significant.



ANOVA Example

Note that tension has 3 levels (L-M-H), so where different?



ANOVA Example

> TukeyHSD(fm1, "tension", ordered = TRUE)

Tukey multiple comparisons of means

95% family-wise confidence level

factor levels have been ordered

Fit: aov(formula = breaks ~ wool + tension, data = warpbreaks)

$tension

diff lwr upr p adj

M-H 4.722222 -4.6311985 14.07564 0.4474210

L-H 14.722222 5.3688015 24.07564 0.0011218

L-M 10.000000 0.6465793 19.35342 0.0336262

Difference in L-H and L-M.



ANOVA Example

I See ?TukeyHSD for more details.

I The help example also gives you a graph.



ANOVA Example

Others
I Simultaneous C.I.

I Scheffé.
I Tests for all “contrasts” - flexible.
I Inferior to Tukey for pairwise comparison.

I Bonferroni

I Other methods.



Modern Usage

I Previous examples: Good for several comparisons.

I Modern: Massive number of comparisons.

I Algorithm



Modern Usage

So far

I Bonferroni, Tukey, Scheffé - controls for family-wise error rate
(FWER).

I FWER: This is the probability of (falsely) rejecting at least
one true null hypothesis, so we want this to be small.

I Potential problems (why?)



FWER

For example

I Let m be the number of total comparisons (e.g., the number
of genes).

I If we set α, the probability of false rejection of H0 (the Type I
error).

I Then the expected number of false rejections is α ·m
I So, if α = 0.05 and m = 10, 000, then you would reject
α ·m = 500 components even if all H0 is true.

I The Bonferroni correction for FWER: Divide α by m to
preserve the FWER of α (or multiply p-values by m).



FWER

Consider the following table:

“Accept” H0 Reject H0

H0 True U V m0

H0 Not true T S m −m0

m − R R m



FWER

I m: # of total comparisons.

I m0: # of true null hypotheses (unknown).

I R: # of total rejections (random but observable).

I V : # of Type I errors.

I T : # of Type II errors.

I U, S : Correct decisions, want to minimize V and T .



FWER

So

I FWER = P(V ≥ 1)

I That is, the probability of (falsely) rejecting at least one true
null hypothesis.

I We control FWER by setting FWER = P(V ≥ 1) ≤ α.



FDR

False discovery rate (FDR).

I Modern method.

I More comlpicated.

I Concept.



FDR

Go back to

“Accept” H0 Reject H0

H0 True U V m0

H0 Not true T S m −m0

m − R R m



FDR

I Whereas FWER = P(V ≥ 1).

I FDR = E (V /R)

I i.e., FDR is the expected proportion of false rejections.

I So FDR only concerns the rejected hypotheses.



FDR

Comparison with FWER:

I FWER tends to give too many non-rejections, esp. if m is
large (conservative).

I FDR is more powerful (more power to detect the true
difference) compared to FWER.

I But, FDR is more complicated (algorithmic) and
limited/misunderstood.



More Information

Some websites

https://www.itl.nist.gov/div898/handbook/prc/section4/prc47.htm

https://www.publichealth.columbia.edu/research/population-health-methods/false-discovery-rate

https://www.stat.cmu.edu/~genovese/talks/hannover1-04.pdf


