Homework 1

Due Tuesday, September 17

Show all your work. For Problems 4, 5 and 6, please try to use R, to gain some practice using the software. Data files available on class website (for Problem 6).

- 1. Recall that $SXX = \sum (x_i \bar{x})^2$ and $SXY = \sum (x_i \bar{x})(y_i \bar{y})$. Verify that
 - (a) $SXX = \sum (x_i \bar{x})x_i = \sum x_i^2 n\bar{x}^2$
 - (b) $SXY = \sum (x_i \bar{x})y_i = \sum (y_i \bar{y})x_i = \sum x_i y_i n\bar{x}\bar{y}$
- 2. Consider the model

$$y_i = \alpha + \beta_1(x_i - \bar{x}) + e_i, \quad i = 1, \dots, n$$

Starting from $RSS(\alpha, \beta_1) = \sum (y_i - \alpha - \beta_1(x_i - \bar{x}))^2$, show that the least squares estimates are given by

$$\hat{\alpha} = \bar{y}, \quad \hat{\beta}_1 = \frac{SXY}{SXX}$$

3. Show that

$$RSS = \sum \hat{e}_i^2 = SYY - \frac{(SXY)^2}{SXX} = SYY - \hat{\beta}_1^2 SXX$$

4. Consider the following data

Х	1	2	3	4	5
Υ	1.9	2.2	2.9	3.2	5.2

Please find \bar{x} , \bar{y} , SXX, SYY, SXY, along with $\hat{\beta}_0$ and $\hat{\beta}_1$, $\operatorname{se}(\hat{\beta}_0)$ and $\operatorname{se}(\hat{\beta}_1)$. Draw the data points and the regression line.

5. Consider the following dataset

	ht	wt
1	169.6	71.2
2	166.8	58.2
3	157.1	56.0
4	181.1	64.5
5	158.4	53.0
6	165.6	52.4
7	166.7	56.8
8	156.5	49.2
9	168.1	55.6
10	165.3	77.8

This gives ht = height in centimeters and wt = weight in kilograms for 10 children. Interest is in predicting weight from height.

Please find \bar{x} , \bar{y} , SXX, SYY, SXY, along with $\hat{\beta}_0$ and $\hat{\beta}_1$, $\operatorname{se}(\hat{\beta}_0)$ and $\operatorname{se}(\hat{\beta}_1)$. Draw the data points and the regression line.

6. Please find the dataset simple1.csv. Here the response is wage and the predictor is educ. Please find $\bar{x}, \bar{y}, SXX, SYY, SXY$, along with $\hat{\beta}_0$ and $\hat{\beta}_1, se(\hat{\beta}_0)$ and $se(\hat{\beta}_1)$.