MATH 5910

Fall 2024

Midterm Exam

October 29, 2024

- 1. Consider the model $y_i = \beta x_i + e_i$, i = 1, ..., n. Find $\hat{\beta}$ in terms of \sum and x_i and y_i .
- 2. We are given the following codes in R (with line numbers on far left).
 - 1> X<-matrix(c(rep(1,74),x1,x2,x3,x4,x5),ncol=?)
 - 2> bhat<-solve(t(X)%*%X)%*%t(X)%*%y</pre>
 - 3> yhat<-X%*%bhat
 - 4> ehat<-y-yhat
 - 5> rss<-t(ehat)%*%(ehat)
 - 6> sigma2hat<-rss/(??)
 - 7> varhatbhat<-sigma2hat[1,1]*solve(t(X)%*%X)</pre>
 - 8> se<-sqrt(diag(varhatbhat))</pre>
 - 9> tstat<-bhat/se
 - (a) Find the missing values at lines 1 and 6 (need numerical values).
 - (b) Write a command to compute the p-values of the t-statistics of line 9.
- 3. Suppose that we are given the model $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + e_i$ for i = 1, 2, 3, with the matrix form $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$, and the design matrix \mathbf{X} given by

$$\mathbf{X} = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 0 & 2 \\ 1 & 1 & -1 \end{pmatrix}$$

Suppose that $\hat{\sigma}^2$ is known and given by $\hat{\sigma}^2 = 12$. Show that $\operatorname{se}(\hat{\beta}_0) = 2$.