Math 522, Spring 2018 – Analysis II Homework assignment 2. Due Monday, February 12.

1. (i) Evaluate $\sum_{k=1}^{\infty} k^3 x^k$ for |x| < 1. (ii) Evaluate $\sum_{k=2}^{\infty} k^{-1} x^{2k+1}$ for |x| < 1. What can you say for x = 1 and x = -1?

2. Let

$$f(x) = \begin{cases} e^{-1/x} & \text{if } x > 0\\ 0 & \text{if } x \le 0 \end{cases}$$

Show that f has derivatives of all orders at x = 0, and that $f^{(n)}(0) = 0$ for all $n \in \mathbb{N}$.

Hint: Prove by induction on n that for x > 0, $f^{(n)}(x) = P_n(1/x)e^{-1/x}$ where P_n is a polynomial.

3. Let *f* be as in Problem 2.

(i) Does the Taylor series expanded at 0 represent the function f(x) in an open interval containing 0?

(ii) Discuss the validity (true or false?) of the following statement: There is an open interval (-r, r) and a positive constant A so that for every n the inequality $\sup_{x \in (-r,r)} |f^{(n)}(x)| \leq A^n n!$ holds. (iii) Let $g(x) = f(1-x^2)$. Show that g is a C^{∞} -function on \mathbb{R} with the

property that g(x) > 0 for $x \in (-1, 1)$ and g(x) = 0 for $x \notin (-1, 1)$.

(iv) Given an interval (a, b) construct a C^{∞} -function h on \mathbb{R} with the property that h(x) > 0 for $x \in (a, b)$ and h(x) = 0 for $x \notin (a, b)$.

4. (i) Let $\{a_k\}_{k=1}^{\infty}$ be a sequence of real or complex numbers with limit L. Prove that

$$\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = L$$

Definition: Given the sequence a_k , form the partial sums $s_n = \sum_{k=1}^n a_k$ and let

$$\sigma_N = \frac{s_1 + \dots + s_N}{N}$$

 σ_N is called the Nth Cesàro mean of the sequence s_k or the Nth Cesàro sum of the series $\sum_{k=1}^{\infty} a_k$. If σ_N converges to a limit S we say that the series $\sum_{k=1}^{\infty} a_k$ is Cesàro summable to S.

4. cont. (ii) Prove that if $\sum_{k=1}^{\infty} a_k$ is summable to S (i.e. by definition converges with sum S) then $\sum_{k=1}^{\infty} a_k$ is Cesàro summable to S. (iii) Prove that the sum $\sum_{k=1}^{\infty} (-1)^{k-1}$ does not converge but is Cesàro summable to some limit S and determine S.

5. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of complex numbers. The series $\sum_{k=1}^{\infty} a_k$ is called *Abel summable* to *S* if for every *r* with $0 \le r < 1$ the series

$$A(r) = \sum_{k=1}^{\infty} a_k r^k$$

converges and if

$$\lim_{r \to 1-} A(r) = S \,.$$

Consider the series $1 - 2 + 3 - 4 + 5 - 6 + \dots = \sum_{k=1}^{\infty} (-1)^{k-1} k$ which of course is not convergent.

(i) Show that this series is Abel summable to some S and determine S.

(ii) Show that this series is not Cesàro summable to any number.

(*Hint:* If $\sum_{k=1}^{\infty} c_k$ is Cesàro summable then verify that c_n/n tends to 0).

Honors problem 1 (not graded):

Abel's theorem tells us that if $\sum_{k=1}^{\infty} a_k$ is summable to S then the series is also Abel summable to S. This exercise strengthens this implication to

$$\sum_{k=1}^{\infty} a_k \text{ summable } \implies \sum_{k=1}^{\infty} a_k \text{ Cesàro summable } \implies \sum_{k=1}^{\infty} a_k \text{ Abel summable }$$

where the first implication is the result of No. 4(ii). We are concerned with the second implication:

(i) Prove first that if $\sum_k a_k$ is Cesàro summable then for r < 1 we have

$$\sum_{k=1}^{\infty} a_k r^k = (1-r)^2 \sum_{n=1}^{\infty} n\sigma_n r^n$$

(ii) Split the right hand side of the previous formula as

$$(1-r)^2 \sum_{n=1}^{\infty} n(\sigma_n - S)r^n + (1-r)^2 \sum_{n=1}^{\infty} nSr^n$$

and compute the second term. Then take the limit of the first term as $r \rightarrow 1-$ and finish the proof of the second implication.