Math 522, Spring 2018 – Analysis II (Roos) Homework assignment 3. Due Monday, February 19.

(Problems with an asterisk (*) are optional.)

1. Recall the Fejér kernel $K_N(x) = \frac{1}{N+1} \sum_{n=0}^{N} \sum_{k=-n}^{n} e^{ikx}$ for integer $N \ge 0$.

(i) Show that

$$\frac{1}{2\pi}\int_{-\pi}^{\pi}K_N(x)dx = 1.$$

(ii) Prove that

$$K_N(x) = \frac{1}{N+1} \frac{1 - \cos((N+1)x)}{1 - \cos(x)}.$$

(iii) For all $\pi \geq \delta > 0$ prove that

$$\lim_{N \to \infty} \frac{1}{2\pi} \int_{-\delta}^{\delta} K_N(x) dx = 1.$$

(Thus, $(K_N)_N$ is an approximation of unity.)

2. Let f be the 2π -periodic function satisfying f(x) = x for $x \in [-\pi, \pi)$. (i) Compute the Fourier coefficients

$$\widehat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-itn} dt. \ (n \in \mathbb{Z})$$

(ii) Use Parseval's theorem to conclude that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

3. Show that there exists no continuous 2π -periodic function g such that f * g = f holds for all continuous 2π -periodic functions f. *Hint:* Use the Riemann-Lebesgue lemma.

4. Define a sequence of polynomials $(T_n)_n$ by $T_0(x) = 1$, $T_1(x) = x$ and the following recurrence relation:

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$$

for $n \geq 2$.

(i) Show that $T_n(x) = \cos(nt)$ if $x = \cos(t)$. *Hint:* Use that $2\cos(a)\cos(b) = \cos(a+b) + \cos(a-b)$ for all $a, b \in \mathbb{C}$. (ii) Compute

$$\int_{-1}^{1} T_n(x) T_m(x) \frac{dx}{\sqrt{1-x^2}}$$

for all non-negative integers n, m.

Turn the page.

4. cont. (iii) Prove that $|T_n(x)| \leq 1$ for $x \in [-1, 1]$ and determine when there is equality.

5*. Construct a sequence of real-valued polynomials $(p_n)_n$ such that

$$\int_0^1 p_n(x) p_m(x) dx = \begin{cases} 1, & \text{if } n = m, \\ 0, & \text{if } n \neq m \end{cases}$$

for all non-negative integers n, m.

6*. A metric space is called *separable* if it has a countable dense subset. Show that every compact metric space is separable.

Hint: For every positive integer n consider an open cover formed by open 1/n-balls.