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INSTRUCTOR: J. ROOS

Let f be a measurable function on Rd (real- or complex-valued; that is
not important for our discussion here). Recall from the lecture that we call
f (absolutely) Lebesgue integrable if

∫
|f | < ∞ (where

∫
|f | is just short

notation for
∫
Rd |f(x)|dx, as usual).

1. The space L1. Observe that the space of Lebesgue integrable functions
forms a vector space: if f, g are Lebesgue integrable and λ is a scalar, then
f+λg is Lebesgue integrable. Can we equip the space of Lebesgue integrable
functions with a norm? A natural choice seems to be

‖f‖1 =

∫
|f |.

Is this a norm? Let’s check.

(1) Triangle inequality: for f, g Lebesgue integrable,

‖f + g‖1 =

∫
|f + g| ≤

∫
|f |+

∫
|g| = ‖f‖1 + ‖g‖1

(2) Homogeneity: for f Lebesgue integrable and λ a scalar, we have

‖λf‖1 =

∫
|λf | = |λ|

∫
|f | = |λ| · ‖f‖1

(3) Definiteness: we should have that ‖f‖1 = 0 if and only if f = 0. This
fails for trivial reasons: the Lebesgue integral does not detect what
happens on nullsets. For example, f = 1Qd is a non-zero Lebesgue
integrable function with ‖f‖1 = 0.

Luckily, there is an easy way out to repair the problem with definiteness.
This embraces our general philosophy that we don’t care what happens on
a set of Lebesgue measure zero. Define an equivalence relation on the set of
Lebesgue integrable functions as follows: two functions f, g are equivalent,
f ∼ g, if and only if f = g a.e. (that is, if there exists E ⊂ Rd such
that m(E) = 0 and f(x) = g(x) for all x 6∈ E). Letting L denote the
set of Lebesgue integrable functions, we now define L1(Rd) as the set of
equivalence classes of Lebesgue integrable functions with respect to ∼:

L1(Rd) = L/ ∼
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That is, an element of L1(Rd) is an equivalence class: [f ] ∈ L1(Rd) with
[f ] = {g ∈ L : f ∼ g}. Clearly, L1(Rd) is still a vector space. We define a
norm on it by setting

‖[f ]‖L1(Rd) = ‖f‖1 =

∫
|f |.

Note that this is well-defined since ‖f‖1 = ‖g‖1 for every f ∼ g. Also, this
norm still satisfies the triangle inequality and is homogeneous. Moreover,
it is now also definite because suppose ‖[f ]‖L1(Rd) = 0. Then

∫
|f | = 0, so

f = 0 a.e. That is, [f ] = 0 (here 0 ∈ L1(Rd) denotes the equivalence class
of the zero function).

Because it is cumbersome to speak of equivalence classes all the time (and
it also comes with notational overhead, since we need to write [f ] rather than
f), we adopt the following standard convention:

Convention. We continue to speak of elements of L1(Rd) as functions
and whenever we write f ∈ L1(Rd), then f is silently assumed to be an
arbitrarily chosen member of the corresponding equivalence class.

Remarks. 1. Careful: As a consequence, it is nonsensical to speak of
individual values of f : for example, the value f(0) is not well-defined for an
L1 function f . However, it still makes sense to speak of the values of f in
an almost-everywhere-sense. For instance, it makes sense to say that f ≥ 0
a.e.
2. Even with this convention in mind, it still makes sense to speak of regu-
larity properties of f ∈ L1(Rd). For instance, if we say that f ∈ L1(Rd) is
continuous, then we mean that there exists a (uniquely determined) member
in the equivalence class of f which is continuous and we silently choose f to
be that function.
3. In the arguments that follow, it is instructive to convince yourself that
this convention does not cause a lack of rigor by translating the correspond-
ing arguments for yourself into the language of equivalence classes. You
should do so until you become convinced that this convention makes sense.

Example 1. Let f be a bounded measurable function supported in a set of
finite measure. Then f ∈ L1(Rd). Indeed, say |f | ≤ M a.e. Then, by
monotonicity of the integral,∫

|f | ≤
∫
M1supp(f) = Mm(supp(f)) <∞.

Example 2. Fix a ∈ R. Consider the functions

fa(x) =

{
|x|a if 0 < |x| < 1,
0 otherwise
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ga(x) =

{
|x|a if |x| > 1,
0 otherwise

Exercise 3. fa ∈ L1(Rd) if and only if a > −d and ga ∈ L1(Rd) if and only
if a < −d.

In particular, this shows that L1(Rd) also contains unbounded functions
and functions supported on a set of infinite measure.

To decide whether a given function is in L1(Rd) we need to have informa-
tion on its magnitude and on the size (read: measure) of the sets where it
has a certain magnitude. To illustrate this idea, let’s look at the following
easy criterion to decide whether f ∈ L1(Rd).

Lemma 4. We have f ∈ L1(Rd) if and only if∑
k∈Z

2km({x ∈ Rd : 2k ≤ |f(x)| ≤ 2k+1}) <∞

Proof. We already learned that integrals interchange with infinite sums for
non-negative quantities. Using this fact, we have∫

|f | =
∫ ∑

k∈Z
|f |1{2k≤|f |≤2k+1} =

∑
k∈Z

∫
|f |1{2k≤|f |≤2k+1}

Combining this with monotonicity of the integral, we observe∫
|f | ≤

∑
k∈Z

∫
2k+11{2k≤|f |≤2k+1} = 2

∑
k∈Z

2km({x ∈ Rd : 2k ≤ |f(x)| ≤ 2k+1})

and similarly,∫
|f | ≥

∑
k∈Z

∫
2k1{2k≤|f |≤2k+1} =

∑
k∈Z

2km({x ∈ Rd : 2k ≤ |f(x)| ≤ 2k+1}).

�

Example 2 revisited. Let us decide when fa is in L1(Rd). Clearly it is if
a ≥ 0. So let a < 0. We are interested in the measure of the sets

Ek = {2k ≤ |x|a ≤ 2k+1} = {2(k+1)/a ≤ |x| ≤ 2k/a}

for k > 0. Note that Ek is contained in a cube of side length equal to
a constant times 2k/a and also contains a cube of side length equal to a
constant times 2k/a. Thus, the measure of Ek is comparable to 2dk/a. Thus,
fa ∈ L1(Rd) if and only if ∑

k>0

2k2dk/a <∞

This is the case if and only if 1 + d/a < 0 ⇔ a > −d (keep in mind a < 0).
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2. Lp spaces. In analysis, it is often desirable to refine the notion of an
integrable function in the following way. Let p ∈ [1,∞). We say that1

f ∈ Lp(Rd) if |f |p ∈ L1(Rd). In other words, if

‖f‖p =
( ∫
|f |p

)1/p
<∞.

Example 5. As in Example 2 above we have

|x|a1|x|<1 ∈ Lp(Rd) if and only if a > −d/p,

|x|a1|x|>1 ∈ Lp(Rd) if and only if a < −d/p.

It is easy to see that Lp(Rd) is a vector space. Also we have that ‖λf‖p =

|λ| · ‖f‖p for every scalar λ and f ∈ Lp(Rd). Moreover, if ‖f‖p = 0, then
f = 0 a.e. To prove that ‖·‖p defines a norm it remains to verify the triangle
inequality. This is no longer as trivial as it was in the case p = 1. To prove
it we need the following inequality that turns out to be an essential tool in
the analysis of Lp spaces.

Theorem 6 (Hölder’s inequality). Let p ∈ (1,∞) and p′ ∈ (1,∞) such that
1
p + 1

p′ = 1. Then we have ∫
|fg| ≤ ‖f‖p‖g‖p′

for all f ∈ Lp(Rd) and g ∈ Lp′(Rd).

Remark 7. 1. p′ is called the dual exponent of p.
2. The special case p = 2 is called Cauchy-Schwarz inequality.

Proof. Without loss of generality we may assume ‖f‖p = 1 and ‖g‖p′ = 1
(more precisely, we claim that the general case follows from the case ‖f‖p =
1, ‖g‖p′ = 1: indeed for general f, g, use the inequality on f/‖f‖p and
g/‖g‖p′).
Now use the following elementary inequality for real numbers (verify it as
an exercise; for example using the convexity of the exponential function):

|f(x)| · |g(x)| ≤ 1

p
|f(x)|p +

1

p′
|g(x)|p′

We obtain∫
|fg| ≤ 1

p

∫
|f |p +

1

p′

∫
|g|p′ =

1

p
‖f‖pp +

1

p′
‖g‖p

′

p′ =
1

p
+

1

p′
= 1.

�

Remark 8. The proof also reveals that we have equality in Hölder’s inequal-
ity precisely if the functions |f |p and |g|p′ are scalar multiples of eachother
(almost everywhere, of course).

1We still follow the convention that an element of Lp(Rn) is by definition actually an
equivalence class of functions that agree almost everywhere.
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As an application of Hölder’s inequality we can now prove the triangle
inequality for Lp norms.

Theorem 9 (Minkowski’s inequality). Let p ∈ (1,∞). Then

‖f + g‖p ≤ ‖f‖p + ‖g‖p
for all f, g ∈ Lp(Rd).

Proof. The key is to use the pointwise inequality

|f(x) + g(x)|p ≤ |f(x) + g(x)|p−1|f(x)|+ |f(x) + g(x)|p−1|g(x)|
This gives

‖f + g‖pp =

∫
|f + g|p ≤

∫
|f + g|p−1|f |+

∫
|f + g|p−1|g|

Observe that p′ = p
p−1 , so |f + g|p−1 ∈ Lp′(Rd) with

‖|f + g|p−1‖p′ = ‖f + g‖p−1p .

Thus, Hölder’s inequality tells us that

‖f + g‖pp ≤ ‖f + g‖p−1p ‖f‖p + ‖f + g‖p−1p ‖g‖p.

Note that we may assume that ‖f +g‖p > 0 since otherwise there is nothing

to prove. Thus, dividing by ‖f + g‖p−1p we obtain the claim. �

Exercise 10. Determine under which condition on f, g we have equality in
Minkowski’s inequality.

This shows that Lp(Rd) is a normed vector space. A natural question is
whether it is a Banach space2. In view of the fact that a Cauchy sequence
in Lp(Rd) does not necessarily converge pointwise almost everywhere (see
Exercise 23), this does not seem at all obvious.

Theorem 11 (Riesz-Fischer). Lp(Rd) is complete for every p ∈ [1,∞).
That is, if (fn)n ⊂ Lp(Rd) is a Cauchy sequence with respect to ‖ · ‖p, then

there exists f ∈ Lp(Rd) such that fn → f in Lp(Rd).

Proof. Suppose that (fn)n is a Cauchy sequence in Lp(Rd). Then, for every
ε > 0, there exists N(ε) ∈ N such that

‖fn − fm‖p < ε for every n,m ≥ N(ε).

The difficult part is to get a hold of a good candidate for the limiting function
f . The plan is to first show that a suitable subsequence actually converges
pointwise almost everywhere and then choose f as the pointwise limit of
that subsequence. To do this we choose a sequence (nk)k such that

‖fnk+1
− fnk

‖p ≤ 2−k for every k ∈ N

2Recall that a normed vector space is called Banach space if it is complete, i.e. if every
Cauchy sequence converges (with respect to the norm).
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This is possible by assumption (for instance, N(2−k) is a good choice for
nk). We claim that the sequence (fnk

(x))k converges for almost every x.
Define

g`(x) =
∑̀
k=1

|fnk+1
(x)− fnk

(x)| and g(x) =
∞∑
k=1

|fnk+1
(x)− fnk

(x)|.

(Note that g(x) may equal∞.) By Minkowski’s inequality and the construc-
tion of (nk)k we obtain

‖g`‖p ≤
∑̀
k=1

‖fnk+1
− fnk

‖p ≤
∑̀
k=1

2−k < 1.

By Fatou’s lemma we then have

‖g‖pp =

∫
lim
`→∞

|g`|p ≤ lim inf
`→∞

∫
|g`|p = lim inf

`→∞
‖g`‖pp ≤ 1.

In particular, g(x) <∞ for a.e. x. This proves that the series

f(x) = fn1(x) +
∞∑
k=1

(fnk+1
(x)− fnk

(x))

converges absolutely for a.e. x. Since the sequence of partial sums of that
series is just the sequence (fnk

)k, this proves that fnk
(x)→ f(x) for a.e. x

as k →∞. It remains to show that fn → f in Lp(Rd). This is easy now: by
Fatou’s lemma we have

‖fm − f‖pp =

∫
|f − fm|p ≤ lim inf

k→∞

∫
|fnk
− fm|p −→ 0 as m→∞,

using that (fn)n is a Cauchy sequence. �

3. The space L∞. We say that a measurable function is essentially
bounded if

‖f‖∞ = ess sup |f | = inf{M > 0 : |f(x)| ≤M for a.e. x ∈ Rd} <∞

The number ‖f‖∞ is called the essential supremum of f . Note that ‖f‖∞ =
‖g‖∞ whenever f = g a.e. The set of (equivalence classes of) essentially
bounded functions is called L∞(Rd).

Exercise 12. Show that L∞(Rd) is a Banach space.

(This is much more straightforward to show than for Lp with p <∞.)

Remark 13. Observe that L∞ fits nicely into the family of Lp spaces with
p < ∞. As an instance of this, verify that Minkowski’s inequality and
Hölder’s inequality hold for all p ∈ [1,∞] (the dual exponent of 1 is ∞ and
vice versa). Also see Exercise 20
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4. Further exercises.

Exercise 14. Show that Lp(Rd) 6⊂ Lq(Rd) for all p, q ∈ [1,∞] with p 6= q.

Exercise 15. (a) Let f ∈ Lp(Rd) for some p ∈ [1,∞) and assume that
f is supported on a set of finite measure. Show that f ∈ Lq(Rd) for all
1 ≤ q ≤ p.
(b) Let g ∈ Lp(R) for some p ∈ [1,∞) and assume that g is constant a.e.
on every interval of the form [k, k + 1] for k ∈ Z. Show that g ∈ Lq(R) for
every p ≤ q ≤ ∞.

Exercise 16. Let 1 ≤ p < r < q ≤ ∞ and assume that f ∈ Lp(Rd)∩Lq(Rd).
Prove that

‖f‖r ≤ ‖f‖θp‖f‖1−θq

where θ ∈ (0, 1) such that 1
r = θ

p + 1−θ
q . In particular, f ∈ Lr(Rd).

Exercise 17. Suppose f ∈ Lp(Rd) for every 1 ≤ p <∞. Does it follow that
f ∈ L∞(Rd) ? (Proof or counterexample.)

Exercise 18. Let p ∈ [1,∞]. Give an example for a function f ∈ Lp(Rd)
such that f 6∈ Lq(Rd) for all q 6= p.

Exercise 19. Let X =
⋂
p∈[1,∞] L

p(Rd). Show that X is a dense subspace

of Lp(Rd) for every p ∈ [1,∞).

Exercise 20. Suppose that f is a bounded measurable function on Rd which
is supported on a set of finite measure. Prove that limp→∞ ‖f‖p = ‖f‖∞.

Exercise 21. Construct an integrable function f : R → [0,∞) such that
for every g that is equal to f almost everywhere, g is unbounded on every
open interval.
Hint: What is the easiest unbounded integrable function you can think
of? Can you go from there to make an integrable function that blows up
whenever approaching a rational number?

Exercise 22. Let f ∈ Lp(Rd) for some 1 ≤ p < ∞. Prove that for every
λ > 0 we have

m({x ∈ Rd : f(x) > λ})1/p ≤ λ−1‖f‖p.

Exercise 23. Let 1 ≤ p < ∞. Let (fn)n be a sequence in Lp(Rd) that
converges to some f ∈ Lp(Rd) (in Lp-norm).
(a) Prove that for every ε > 0 we have

lim
n→∞

m({x ∈ Rd : |fn(x)− f(x)| > ε}) = 0.

(b) Construct a sequence (fn)n convergent in Lp(Rd) such that limn→∞ fn(x)
does not exist for a.e. x ∈ Rd.
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