Math 629, Spring 2019 - Homework 10.

Due Monday, April 15.

(Problems with an asterisk (*) are optional.)

- 1. Do Exercise 14 in Chapter 3.5 in Stein-Shakarchi "Real Analysis".
- **2.** For $a, b \in \mathbb{R}$ define the function $F_{a,b} : [0,1] \to \mathbb{R}$ by

$$F_{a,b}(x) = \begin{cases} x^a \sin(x^b) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Determine all values of a, b such that the function $F_{a,b}$ is of bounded variation on [0, 1].

3. Let $F:[a,b]\to\mathbb{R}$ be a continuous function of bounded variation. Show that the total variation on [a,x] defined by

$$T_F(a, x) = \sup_{a=t_0 < \dots < t_N = x} \sum_{j=1}^N |F(t_j) - F(t_{j-1})|$$

is a continuous function of $x \in [a, b]$.

4. Suppose that f is an integrable function on \mathbb{R} . Let

$$Mf(x) = \sup_{\varepsilon > 0} \frac{1}{2\varepsilon} \int_{-\varepsilon}^{\varepsilon} |f(x - t)| dt$$

denote the centered Hardy-Littlewood maximal function.

(i) Show that Mf is lower semicontinuous.

Recall: A real-valued function g is lower semicontinuous if and only if the superlevel set $\{g > \lambda\}$ is open for all $\lambda \in \mathbb{R}$.

- (ii*) Suppose f is continuous at $x \in \mathbb{R}$. Prove that Mf is continuous at x.
- **5*.** (This exercise is meant for those that know some complex analysis.) Let a > 1. The function $t \mapsto e^{it^a} \mathbf{1}_{t>0}$ is not integrable. Nevertheless, show that

$$\int_0^\infty e^{it^a}dt := \lim_{R \to \infty} \int_0^R e^{it^a}dt = e^{i\frac{\pi}{2a}} \Gamma \big(1 + \frac{1}{a}\big),$$

where $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$ denotes the gamma function.

Hint: Apply Cauchy's theorem along a conveniently chosen contour in the complex plane to compare with $\int_0^\infty e^{-t^a} dt$.