Math 629, Spring 2019 - Homework 11.

Due Monday, April 22.

(Problems with an asterisk (*) are optional.)

- **1.** Let $f:(a,b)\times\mathbb{R}^d\to\mathbb{R}$ be such that
 - for every $y \in \mathbb{R}^d$, $x \mapsto f(x,y)$ is differentiable,
 - for every $x \in (a, b), y \mapsto f(x, y)$ is integrable, and
 - there exists a non-negative integrable function $g: \mathbb{R}^d \to \mathbb{R}$ such that $|\partial_x f(x,y)| \leq g(y)$ for every $x \in (a,b), y \in \mathbb{R}^d$.

For $x \in (a, b)$ let

$$F(x) = \int f(x, y) dy.$$

Prove that $F:(a,b)\to\mathbb{R}$ is differentiable and that for every $x\in(a,b)$,

$$F'(x) = \int \partial_x f(x, y) dy.$$

2. Let $\varphi:[a,b]\to\mathbb{R}$ be absolutely continuous and strictly increasing. Prove that for every integrable function f we have

$$\int_{\varphi(a)}^{\varphi(b)} f = \int_{a}^{b} f(\varphi(x))\varphi'(x)dx$$

- **3.** Suppose that F and G are absolutely continuous on [a, b].
 - (i) Prove that $F \cdot G$ is also absolutely continuous.
- (ii) Prove that

$$\int_a^b F' \cdot G + \int_a^b F \cdot G' = F(b)G(b) - F(a)G(a).$$

- **4.** Let $F:[a,b]\to\mathbb{R}$ be absolutely continuous.
 - (i) Suppose $E \subset [a, b]$ has measure zero. Show that m(F(E)) = 0.
- (ii) Show that F(E) is measurable for every measurable set $E \subset [a, b]$.

(Turn the page.)

5*. Suppose F is absolutely continuous on [a, b]. Show that

$$\sup_{a=t_0 < \dots < t_N = b} \sum_{j=1}^N |F(t_j) - F(t_{j-1})| = \int_a^b |F'|$$

Hint: First prove it for C^1 functions (recognize a Riemann sum) and then use an approximation argument.

6*. Let $F:[a,b]\to\mathbb{R}$ be a function of bounded variation. Given $g:[a,b]\to\mathbb{R}$ we say that g is *Stieltjes integrable* with respect to F if for every $\varepsilon>0$ there exists $\delta>0$ such that if $\{t_j:j=0,\ldots,N\}$ and $\{t'_j:j=0,\ldots,N'\}$ are two partitions of [a,b] with $\max_j|t_j-t_{j-1}|\leq \delta$, $\max_j|t'_j-t'_{j-1}|\leq \delta$, then

$$\left| \sum_{j=1}^{N} g(\xi_j) (F(t_j) - F(t_{j-1})) - \sum_{j=1}^{N'} g(\xi_j') (F(t_j') - F(t_{j-1}')) \right| \le \varepsilon$$

holds for every choice of $\xi_j \in [t_{j-1}, t_j]$ and $\xi_j' \in [t_{j-1}', t_j'].$

(i) Suppose that g is Stieltjes integrable with respect to F as defined above. Prove that there exists a number $L \in \mathbb{R}$ such that for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every partition $\{t_j : j = 0, \ldots, N\}$ of [a, b] with $\max_j(t_j - t_{j-1}) \leq \delta$ and every choice of $\xi_j \in [t_{j-1}, t_j]$ we have

$$\left| \sum_{j=1}^{N} g(\xi_j) (F(t_j) - F(t_{j-1})) - L \right| \le \varepsilon.$$

From now on we write this number as

$$L = \int_{a}^{b} g dF$$

and call it the *Stieltjes integral* of g with respect to F.

(ii) Prove that continuous functions are Stieltjes integrable.

(iii) Suppose that $f \in L^1([a,b])$ (that is, $f\mathbf{1}_{[a,b]} \in L^1(\mathbb{R})$). Let $F(x) = \int_a^x f$. Show that the Lebesgue integral $\int_a^b f$ can be written as a Stieltjes integral (i.e. find F, g such that $\int_a^b f = \int_a^b g dF$).

Hint: (iii) is easier than you may think.