Math 629, Spring 2019 - Homework 4.

Due Monday, February 25.

Do Exercise 16 in Chapter 1.6¹ and Problems 1, 4 in Chapter 1.7.

Optional (not graded):

- 1. Let Σ denote the Borel σ -algebra in \mathbb{R}^d . Let $\widetilde{m}: \Sigma \to [0,\infty]$ be a map such that
 - (1) $\widetilde{m}([0,1]^d) = 1$,
 - (2) $\widetilde{m}(\bigcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} \widetilde{m}(E_j)$ for pairwise disjoint sets $(E_j)_j$ in Σ , (3) $\widetilde{m}(x+E) = \widetilde{m}(E)$ for every $x \in \mathbb{R}^d$ and every $E \in \Sigma$

Show that \widetilde{m} coincides with the Lebesgue measure, i.e. that $m(E) = \widetilde{m}(E)$ holds for every $E \in \Sigma$.

- 2. (a) Read about the Brunn-Minkowski inequality in Chapter 1.5.
- (b) For a measurable set $A \subset \mathbb{R}^d$ with $m(A) < \infty$ define A^* to be the open ball centered at the origin such that $m(A) = m(A^*)$. Prove that $A^* + B^* \subset (A+B)^*.$

¹Numbering refers to the textbook *Real Analysis* by E. M. Stein and R. Shakarchi.